
XBART ACCELERATED BAYESIAN
ADDITIVE REGRESSION TREES

FASTER and MORE
ACCURATE than
XGBoost

R & python code
now available.
Coming soon on
CRAN and pip.

XBART grows trees stochastically
but recursively, using the unique
BART split criteria, so it is FAST.

BART boasts state-of-the-art prediction accuracy.
But, BART MCMC can be SLOW.

By growing trees recursively, many efficiency tricks can be
exploited: pre-sorting variables, adaptive nested cutpoints,
sparse trees.
Scan the QR code to see the paper for details.

by Jingyu He, Saar Yalov and P. Richard Hahn

1
2

B

∑
b= 1

log (σ2

σ2 + τnb) + τ
σ2(σ2 + τnb)

s2
b

<'&78� &GGIPIVEXIH 'E]IWMER &HHMXMZI 7IKVIWWMSR 8VIIW
/MRK]Y -I � �EEV =EPSZ � 5� 7MGLEVH -ELR �

19RMZIVWMX] SJ (LMGEKS� NMRK]YLI%GLMGEKSFSSXL�IHY 2&VM^SRE �XEXI 9RMZIVWMX]

-MKLPMKLXW

XBART is moঞvated by Bayesian addiঞve regres-
sion trees (BART), provides fast posterior esঞma-
ঞon for BART model. Simulaঞon shows that

1. XBART is faster and more accurate than
t;#QQbi with tuning parameters by cross
validaঞon.

2. Fit large data set (250K observaঞons) in
tolerable ঞme, which BART can never do.

'&78 5VMSV

Bayesian Addiঞve Regression Trees, first appeared
in Chipman et al. (2010). BART is not merely a ver-
sion of random forest or boosted regression trees
in which prior distribuঞons have been placed over
model parameters, but prior over tree structure and
parameters.

Pros Robust to tuning parameter, more accurate
predicঞon, a natural Bayesian measure of
uncertainty.

Cons The random walk Metropolis-Hasঞngs Markov
chain Monte Carlo algorithm is slow.

The BART model is

y =
LX

l=1
gl(x, Tl, µl) + ‘ (1)

where Tl denotes regression tree and µl is vector of
means associated to all nodes of tree l. The BART
prior has three components

1. Probability of a node having children at depth d is
–(1 + d)≠—

2. Uniform distribuঞon over available predictors to
split at.

3. Uniform distribuঞon on a discrete set of available
spliমng values for the assigned predictor.

The basic BART MCMC takes a Metropolis-within-
Gibbs algorithm, update each tree by local random
walk Metropolis-Hasঞngs (MH) update. Slow, can-
not work on large data set.

'E]IWMER 'EGOǻXXMRK

Taking advantage of the addiঞve structure of the
model, these updates can be wri�en as

1. Tl, µl | rl, ‡2, for l = 1, . . . , L, which is done
composiঞonally (for each l) as
1. Tl | rl, ‡2,
2. µl | Tl, rl, ‡2,

2. ‡2 | r.

for “residuals” defined as
r(k+1)
l © y ≠

X

lÕ<l

g(X; TlÕ, µlÕ)(k+1) ≠
X

lÕ>l

g(X; TlÕ, µlÕ)(k),

and

r(k) © y ≠
LX

l=1
g(X; Tl, µl)(k),

where k indexes the Monte Carlo iteraঞon.

Code available upon
request for now, will
be on CRAN and
pip (python version)
soon.

,VS[�JVSQ�VSSX 'EGOǻXXMRK

Given the current node, the likelihood of each cut-
point candidate is

fi(v, c) = exp (¸(c, v))Ÿ(c)
PV

vÕ=1
PC

cÕ=0 exp (¸(cÕ, vÕ))Ÿ(cÕ)
(2)

where
¸(v, c) = 1

2

⇢
log

✓
‡2

‡2 + ·n(Æ, v, c)

◆
+ ·

‡2(‡2 + ·n(Æ, v, c))s(Æ, v, c)2
�

+ 1
2

⇢
log

✓
‡2

‡2 + ·n(>, v, c)

◆
+ ·

‡2(‡2 + ·n(>, v, c))s(>, v, c)2
�

for c ”= 0. n(Æ, v, c) is the number of observaঞons in
the current leaf node that have xv Æ c and s(Æ, v, c)
is the sumof the residual r(k)

l ; n(>, v, c) and s(>, v, c)
are defined analogously. Also, Ÿ(c ”= 0) = 1.
For c = 0, corresponding to stop-spliমng opঞon,
we have instead

¸(v, c) = 1
2

⇢
log

✓
‡2

‡2 + ·n

◆
+ ·

‡2(‡2 + ·n)s
2
�

and Ÿ(0) = 1≠–(1+d)≠—

–(1+d)≠— , where n = n(Æ, v, c) + n(>
, v, c), s = s(Æ, v, c) + s(<, v, c).

5VI�WSVXMRK +IEXYVIW JSV *ǽGMIRG]

Observe that the BART criterion depends on the
parঞঞon sum only. With sorted predictor variables,
the likelihood of cut-point can be computed via a
single sweep through the data (per variable), taking
cumulaঞve sum.

s(Æ, v, c) =
X

hÆc

rovh

and
s(>, v, c) =

nX

h=1
rlh ≠ s(Æ, v, c).

7IGYVWMZI GYX�TSMRXW

Take every jth value (starঞng from the smallest) as
an eligible split point with j = Ânb≠2

C Ê.

As a default, we set the number of cut-points to
max (Ôn, 100), where n is the sample size of the en-
ঞre data set.

�TEVWI 8VIIW

We considering m Æ V variables at a ঞme when
sampling each spliমng rule.

We introduce a parameter vector w which denotes
the prior probability that a given variable is chosen
to be split on, as suggested in Linero (2016).

Before sampling each spliমng rule, we randomly
select m variables with probability proporঞonal to
w. These m variables are sampled sequenঞally and
without replacement, with selecঞon probability pro-
porঞonal to w.

:EVMEFPI .QTSVXERGI;IMKLXW

The variable weight parameter w is given a Dirichlet
prior with hyperparameter w̄ set to all ones.

Split counts are updated in between each tree sam-
pling/growth step:

w̄ Ω w̄ ≠ w̄(k≠1)
l + w̄(k)

l (3)

where w̄(k)
l denotes the length-V vector recording

the number of splits on each variable in tree l at
iteraঞon k. Theweight parameter is then resampled
as w ≥ Dirichlet(w̄).

5SWXIVMSV 5VIHMGXMSR

Given K iteraঞons of the algorithm, suppose I < K
is denotes the length of the burn-in period, the final
predicঞon is

f̄ (X) = 1
K ≠ I

KX

k>I

f (k)(X). (4)

where f (k) denotes a sample of the forest.

<'&78 EPKSVMXLQ
Algorithm 1 Grow-from-root backfiমng
1: N Ω number of rows of y, x
2: Sample m variables use weight w as shown in secঞon

sparse trees.
3: SelectC cutpoints as shown in secঞonGrow-from-root

backfiমng.
4: Evaluate C ◊ m + 1 candidate cutpoints and no-split

opঞon with equaঞon (2).
5: Sample one cutpoint propoঞonal to equaঞon (2).
6: if sample no-split opঞon then
7: Sample leaf parameter from normal distribuঞon µ ≥

N
⇣P

y/
h
‡2

⇣
1
· + N

‡2

⌘i
, 1/

h
1
· + N

‡2

i⌘
. return

8: else
9: wl[j] = wl[j] + 1, add count of selected split variable.

10: Split data to le[and right node.
11: GROW_FROM_ROOT(yle[,Xle[, C , m, w, ‡2)
12: GROW_FROM_ROOT(yright,Xright, C , m, w, ‡2)
13: end if

Algorithm 2 Accelerated Bayesian Addiঞve Regression
Trees (XBART)

V Ω number of columns of X
2: N Ω number of rows of X

Iniঞalize r(0)
l Ω y/L.

4: for k in 1 to K do
for l in 1 to L do

6: Calculate residual r(k)
l as shown in secঞon

Bayesian Backfiমng.
if k < I then

8: GROW_FROM_ROOT(r(k)
l ,X, C , V , w, ‡2) {use

all variables in burnin iteraঞons}
else

10: GROW_FROM_ROOT(r(k)
l ,X, C , m, w, ‡2)

end if
12: w̄ Ω w̄ ≠ w̄(k≠1)

l + w̄k
l {update w̄ with split counts

of current tree}
w ≥ Dirichlet(w̄)

14: ‡2 ≥ Inverse-Gamma(N + –, r(k)t
l r(k)

l + ÷)
end for

16: end for
return

.W MX E ZEPMH 2(2(EPKSVMXLQ$

The algorithm works well on its own right. We can
use it as proposal of M-H algorithm, rather than a
random walk M-H, to get full Bayesian inference.
Future work.

�MQYPEXMSRW

n XBART XGB+CV XGB NN
Linear

10k 5.07 (16) 8.04 (61) 21.25 (0) 7.39 (12)
50k 3.16 (135) 5.47 (140) 16.17 (4) 3.62 (14)

250k 2.03 (1228) 3.15 (1473) 11.49 (54) 1.89 (19)
Max

10k 1.94 (16) 2.76 (60) 7.18 (0) 2.98 (15)
50k 1.22 (133) 1.85 (139) 5.49 (4) 1.63 (16)

250k 0.75 (1196) 1.05 (1485) 3.85 (54) 0.85 (22)
Single Index

10k 7.13 (16) 10.61 (61) 28.68 (0) 9.43 (14)
50k 4.51 (133) 6.91 (139) 21.18 (4) 6.42 (16)

250k 3.06 (1214) 4.10 (1547) 14.82 (54) 4.72 (21)
Trig + Poly

10k 4.94 (16) 7.16 (61) 17.97 (0) 8.20 (13)
50k 3.01 (132) 4.92 (139) 13.30 (4) 5.53 (14)

250k 1.87 (1216) 3.17 (1462) 9.37 (49) 4.13 (20)

Table 1. Root mean squared error (running ঞme).

