XBART ACCELERATED BAYESIAN

ADDITIVE REGRESSION | REES

FASTER and MORE R & python code
ACCURATE than now available.

Coming soon on
XGBoost CRAN and pip.

BART boasts state-of-the-art prediction accuracy.
But, BART MCMC can be SLOW.

XBART grows trees stochastically
but recursively, using the unique

BART split criteria, so it iIs FAST.

By growing trees recursively, many efficiency tricks can be
exploited: pre-sorting variables, adaptive nested cutpoints,
sparse trees.

Scan the QR code to see the paper for details.

by Jingyu He, Saar Yalov and P. Richard Hahn

XBART: Accelerated Bayesian Additive Regression Trees

Jingyu He ' SaarYalov¢ P. Richard Hahn @

lUniversity of Chicago, jingyuhe@chicagobooth.edu

2Arizona State University

Highlights

Grow-from-root Backfitting

XBART Is motivated by Bayesian additive regres-
sion trees (BART), provides fast posterior estima-
tion for BART model. Simulation shows that

1. XBART is faster and more accurate than
xgboost with tuning parameters by cross
validation.

2. Fit large data set (250K observations) in
tolerable time, which BART can never do.

BART Prior

Bayesian Additive Regression Trees, first appeared
in Chipman et al. (2010). BART is not merely a ver-
sion of random forest or boosted regression trees
In which prior distributions have been placed over
model parameters, but prior over tree structure and
parameters.

Pros Robust to tuning parameter, more accurate
prediction, a natural Bayesian measure of
uncertainty.

Cons The random walk Metropolis-Hastings Markov
chain Monte Carlo algorithm is slow.

The BART model is

L
y=> glz, T},)+ e (1)
[=1

where T; denotes regression tree and p; is vector of
means associated to all nodes of tree [. The BART
prior has three components

1. Probability of a node having children at depth d is
a(l+d)™"
2. Uniform distribution over available predictors to
split at.

3. Uniform distribution on a discrete set of available
splitting values for the assigned predictor.

The basic BART MCMC takes a Metropolis-within-
Gibbs algorithm, update each tree by local random
walk Metropolis-Hastings (MH) update. Slow, can-
not work on large data set.

Bayesian Backfitting

Given the current node, the likelihood of each cut-
point candidate is

exp (£(c,v))k(c)
S ym1 Xa—gexp (U(c v)k(c)

(v, c) = (2)

where

1 o2 T
/ _)] < 2
(v,) 2 { 05 (02 + (<, v, c)) * o%(0? + Tn(g,v,c))s(_’v’ 2 }
2

1 2 T : (>,0,0)
—<lo s(>,v,c
2 1%\ o2 + (>, v, c) o?(o? 4+ mn(>,v,c))

forc # 0. n(<, v, ¢) is the number of observations in
the current leaf node that have z, < cand s(<, v, ¢)
s the sum of the residual rl(k>; n(>,v,c)and s(>, v, ¢

are defined analogously. Also, k(c # 0) = 1.

For ¢ = 0, corresponding to stop-splitting option,
we have instead

1 o2 T
14 — <1 2
(v,¢) 2 { 05 (02 + Tn) + o%(o? + Tn)s }

Pre-sorting Features for Efficiency

Observe that the BART criterion depends on the
partition sum only. With sorted predictor variables,
the likelihood of cut-point can be computed via a
single sweep through the data (per variable), taking
cumulative sum.
s(<,v,¢) = Zrom
h<c
and

n
S(>7 v, C) — ZTlh — 8(37 v, C)'
h=1

Recursive cut-points

Take every jth value (starting from the smallest) as

an eligible split point with j = |2==].

As a default, we set the number of cut-points to
max (1/n, 100), where n is the sample size of the en-
tire data set.

Sparse Trees

Taking advantage of the additive structure of the
model, these updates can be written as

1. Ty, | 1, 0% forl=1,..., L, which is done
compositionally (for each [) as
1. 11,07
2' M ’ E)”)UZ,

2. 0% r.

for “residuals” defined as
k1
rl(= =Y — ZQ(X; 7—}’7 :ul')(k—l_l) o ZQ(X7 Crl’) :ul’)(k)a
< 1>
and

L
W =y N g(X T,)P,
[=1

where k indexes the Monte Carlo iteration.

Clp:10]
=]

Code available upon
request for now, will
be on CRAN and
pip (python version)
soon.

We considering m < V variables at a time when
sampling each splitting rule.

We introduce a parameter vector w which denotes
the prior probability that a given variable is chosen
to be split on, as suggested in Linero (2016).

Before sampling each splitting rule, we randomly
select m variables with probability proportional to
w. These m variables are sampled sequentially and
without replacement, with selection probability pro-
portional to w.

Variable Importance Weights

The variable weight parameter w is given a Dirichlet
prior with hyperparameter w set to all ones.

Split counts are updated in between each tree sam-
pling/growth step:

e w—w 4wt (3)

where v‘vl(k) denotes the length-V vector recording
the number of splits on each variable in tree [at
iteration k. The weight parameter is then resampled
as w ~ Dirichlet(w).

Posterior Prediction

Given K iterations of the algorithm, suppose [< K
is denotes the length of the burn-in period, the final
prediction is

FX) = > F9%), 2

k>1

where %) denotes a sample of the forest.

XBART algorithm

Algorithm 1 Grow-from-root backfitting

1: N < number of rows of y, x

2. Sample m variables use weight w as shown in section
sparse trees.

3. Select C' cutpoints as shown in section Grow-from-root
backfitting.

4. BEvaluate C' x m + 1 candidate cutpoints and no-split
option with equation (2).

5. Sample one cutpoint propotional to equation (2).

6. If sample no-split option then

7. Sample leaf parameter from normal distribution p ~

N (Zy/ {02 (%+%)} 1/ {%+%D return

8. else

o wlj| = w;lj] + 1, add count of selected split variable.

10. Split data to left and right node.

11: GROW_FROM_ROOT(ott, Xjott, C, m, W, 0°)

12: GROW_FROM_ROOT(yight Xright: C, m, w,)

13: end if

Algorithm 2 Accelerated Bayesian Additive Regression
Trees (XBART)

V <« number of columns of X
2. N <+ number of rows of X
Initialize rl(()) —vy/L.
4: for kin1to K do
forlin1to L do

6: Calculate residual rlk as shown In section
Bayesian Backfitting.
if &k < I then
8 GROW_FROM _ROOT(™ X, €, V', w, o?) {use
all variables in burnin iterations}
else
10 GROW_FROM ROOT(™ X, €, m, w, 02)
end if
12: W W — wl(k_l) + v‘vf {update w with split counts

of current tree}
w ~ Dirichlet(w)
14: o2 ~ Inverse-Gamma(N + a, rl(k>t1’l<k) + 1)
end for
16: end for
return

Is it a valid MCMC algorithm?

The algorithm works well on its own right. We can
use it as proposal of M-H algorithm, rather than a
random walk M-H, to get full Bayesian inference.
Future work.

Simulations

n XBART XGB+CV XGB NN
Linear
10k 5.07 (16) 8.04 (61) 21.25(0) 7.39(12)

50k 3.16 (135) 5.47(140) 1617 (4) 3.62(14)
250k 2.03(1228) 3.15(1473) 11.49(54) 1.89 (19)

Max
10k 1.94 (16) 2.76 (60) /.18 (0) 2.98(15)
50k 1.22(133) 1.85(139) 5.49 (4) 1.63 (16)
250k 0.75(1196) 1.05(1485) 3.85(54) 0.85(22)
Single Index
10k 7.13 (16) 10.61 (61) 28.68 (0) 9.43(14)

50k 4.51(133) 6.91(139) 21.184) 6.42(16)
250k 3.06 (1214) 4.10(1547) 14.82(54) 4.72 (21)

Trig + Poly
10k 4.94 (16) 7.16 (61) 17.97(0) 8.20(13)
50k 3.01(132) 4.92(139) 13.30(4) 5.53(14)
250k 1.87(1216) 3.17(1462) 9.37 (49) 4.13(20)

Table 1. Root mean squared error (running time).

