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Regularization and Confounding in Linear
Regression for Treatment Effect Estimation

P. Richard Hahn∗ , Carlos M. Carvalho† , David Puelz† , and Jingyu He∗

Abstract. This paper investigates the use of regularization priors in the con-
text of treatment effect estimation using observational data where the number of
control variables is large relative to the number of observations. First, the phe-
nomenon of “regularization-induced confounding” is introduced, which refers to
the tendency of regularization priors to adversely bias treatment effect estimates
by over-shrinking control variable regression coefficients. Then, a simultaneous re-
gression model is presented which permits regularization priors to be specified in a
way that avoids this unintentional “re-confounding”. The new model is illustrated
on synthetic and empirical data.
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1 Introduction

This paper considers the use of Bayesian regularized linear regression models for the
purpose of estimating a treatment effect from observational data. Treatment effects –
the amount some response variable would change if the value of the treatment variable
were changed by a given amount – can only be properly estimated from observational
data by taking into account all of the various explanatory factors that may otherwise
account for the observed correlation between the treatment and response variables.
In the case of a linear regression model (assuming it to be correct) this “adjustment
for confounding” means that the model includes a sufficient set of control variables as
regressors in addition to the treatment variable.

Practical implementation of regression modeling for estimating treatment effects
from observational data is complicated by two related issues. First, the minimal set
of sufficient control variables is almost never known and second, the set of candidate
control variables is often quite large relative to the available sample size. This consid-
eration suggests that statistical regularization has a role to play in reliable treatment
effect estimation. It may therefore come as a surprise that naive deployment of Bayesian
shrinkage priors in the context of treatment effect estimation can yield exceptionally
poor estimators. Exploring this phenomenon and providing a straightforward solution
is the main contribution of this paper. We show that regularization can indeed pro-
vide statistical improvements over maximum likelihood estimation, but that it must be
imposed carefully, in a sense we will make precise.
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1.1 Previous literature

Treatment effect estimation is an important topic with a long and varied literature; a

comprehensive review is beyond the scope of this paper. For review articles from an

expressly Bayesian perspective, see Li and Tobias (2014) or Heckman et al. (2014).

This paper focuses more narrowly on the impact of regularization or “shrinkage” pri-

ors on the estimation of treatment effects from observational studies. Our use of reg-

ularization priors in this context addresses a practical data analysis problem that

has been recognized since at least Leamer (1983): regression analyses including very

many potential control variables often produce unsatisfyingly imprecise effect esti-

mates. Leamer (1983) admonishes those who react to this dilemma by hand-selecting

a small subset of the potential controls and proceeding with analysis as if the others

were irrelevant. See also Leamer (1978) for an early Bayesian treatment of this prob-

lem.

More specifically, this paper represents a contribution to the small but growing

literature on Bayesian approaches to treatment effect estimation via linear regression

with many potential controls. Specifically, we propose a conceptual and computational

refinement of ideas first explored in Wang et al. (2012), where Bayesian adjustment

for confounding is addressed via hierarchical priors. Our proposed method can be seen

as an alternative to Wang et al. (2012), with certain conceptual and computational

advantages, namely ease of prior specification and posterior sampling. Other papers

elaborating upon this approach include Wang et al. (2015), Lefebvre et al. (2014) and

Talbot et al. (2015); see also Jacobi et al. (2016). Zigler and Dominici (2014) and An

(2010) focus on Bayesian propensity score models (for use with binary treatment vari-

ables). Wilson and Reich (2014) take a decision theoretic approach to variable selection

of controls. Again, each of these previous approaches cast the problem as one of select-

ing appropriate controls; posterior treatment effect estimates are obtained via model

averaging. Here, we argue that if the goal is estimation of a certain regression param-

eter (corresponding to the treatment effect, provided the model is correctly specified),

then questions about which specific variables are necessary controls is a means to an

end rather than an end in itself. Other recent papers looking at regularized regression

for treatment effect estimation include Ertefaie et al. (2015) and Ghosh et al. (2015),

but even here the focus is on variable selection via the use of 1-norm penalties on the

regression coefficients.

Finally, treatment effect estimation is clearly a sub-topic within the broader field

of causal inference. Here, we do not emphasize this connection, focusing instead on the

specifics of the important special case that is linear regression. For excellent book length

treatments on causal inference, we recommend Imbens and Rubin (2015) and Morgan

and Winship (2014). Like Wang et al. (2012), our work has forebears in earlier work

based on joint modeling of treatment and response variables as functions of control

variables, notably Rosenbaum and Rubin (1983) and Robins et al. (1992), as well as

McCandless et al. (2009).
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1.2 Outline

The paper is structured as follows. In Section 2, we describe how naive regularization
can corrupt treatment effect estimation and present a reparametrized linear model that
avoids this pitfall. Section 3 presents extensive simulation studies demonstrating the
performance of the new model relative to standard alternatives. Section 4 reanalyses
the data of Donohue III and Levitt (2001), which considers the impact of abortion laws
on crime rates, following the similar recent (frequentist) analysis of Belloni et al. (2014).

2 Regularized linear regression for treatment effect
estimation

In this paper, we focus on linear regression models

Yi = αZi +Xiβ + νi, (1)

where Xi is a row vector of control variables, β is a column vector of the control effects,
Zi is a continuous scalar treatment variable and α is a scalar regression coefficient.
When these variables are meant to be interpreted as random variables, they will be
denoted in capital letters; when they are to be interpreted as observed quantities they
will either be lower case, to indicate a scalar quantity, roman font, to indicate a vector,
or bold, to indicate a matrix. We assume the errors, νi, are normally distributed with
zero mean and unknown variance. Under these assumptions, the ordinary least squares
estimator gives unbiased estimates with valid coverage.

Our goal is to accurately estimate the treatment effect, and this is done by including
the proper controls in the equation. Specifically, “proper” in this context means that:

cov(Zi, νi|Xi) = 0. (2)

This exogeneity condition guarantees that estimates of α will have the desired counter-
factual interpretation as “the amount Y would change if Z were changed by one unit”:
α = E(Y | Z = z+1,X)−E(Y | Z = z,X). For a detailed discussion of why (2) licenses
a causal interpretation, see e.g. Imbens and Rubin (2015) section 12.2.4 or Morgan and
Winship (2014) section 6.2.

It will be assumed throughout that this model is correctly specified so that attention
may be focused narrowly on the impact that regularization has on posterior inferences
regarding parameter α. To emphasize, a thorough regression analysis for causal infer-
ence should including a sensitivity analysis to gauge robustness of one’s inferences to
various modeling assumptions. In this paper we intentionally set these practically impor-
tant concerns aside for conceptual clarity: the phenomenon of “regularization-induced
confounding” is an independent issue that arises even if the model and exogeneity as-
sumptions are all satisfied. For a complete introduction to the host of additional issues
surrounding causal inference, see again Imbens and Rubin (2015).

The most common approach to estimating the parameters of linear regression models
is via ordinary least squares (OLS), which in the present model is equivalent to maximum
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likelihood estimation. Estimating the model via OLS guarantees that (2) is satisfied by
construction: it is well-known, and easy to show, that the residual vector produced by
OLS has zero correlation with the observed treatment vector Z. However, (2) will not
in general be satisfied by the residuals corresponding to a shrinkage estimator of β.
Accordingly, in finite samples we have two competing criteria – the shrinkage prior over
β and the sampling distribution for Y1:n – which combine to form our eventual estimate.
What can happen in this setting is that posterior inferences can be affected by the prior
in such a way that (2) is violated in-sample, making the causal interpretation of the α
estimate suspect.

Intuitively, the prior “prefers” to have “small” elements of β; in the case of strong
confounding, a very similar in-sample fit can be achieved by over-stating the magnitude
of the treatment effect parameter α (which is one-dimensional) while simultaneously
attenuating the control variable coefficients. To observe this phenomenon formally, we
can examine the bias of the posterior mean of α in the case of a standard normal
(ridge) prior over β. In this case, considering z and X fixed, the bias of α̂rr (rr for
“ridge regression”) under an independent non-informative prior, may be expressed as:

bias(α̂rr) = −
(
(ztz)−1ztX

)
(Ip +Xt(X− X̂Z))

−1β. (3)

The first term is a p-vector of regression coefficients corresponding to univariate regres-
sions of each Xj on Z; X̂Z is the n-by-p matrix of fitted values from these p regressions.
Note that the bias is not a function of the true value of α, but is a function of every
element of the true (unknown) β vector, with weights proportional to how well Xj is
predicted by Z. To put this formula into the context of treatment effect estimation, it
says roughly that the stronger the confounding is, the worse the bias on the treatment
effect parameter α will be.

2.1 A reparametrized model for regularized treatment effect
regressions

Consider the two equation model:

Selection Eq.: Z = Xγ + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = αZ +Xβ + ν, ν ∼ N(0, σ2
ν).

(4)

Without loss of generality, assume that our variables are zero centered (in practice, one
may include an intercept term).

The designation “selection” refers to the impact that the control variables have on
the level of treatment, Z, received. Prototypically, certain individuals are “selected”
to receive treatment. The “response” equation describes the impact of the treatment
and controls, X, on the conditional expectation of the response (outcome) variable, Y .
Prototypically, Y records some diagnostic measure on individuals. Because X appears in
both equations, the selection equation reflects the confounding influence of the controls,
and the residual variance of this equation, σε, gauges the extent of the confounding.
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These equations correspond to the factorization of the joint distribution

f(Y, Z | X, γ, β, σε, σν) = f(Y | X,Z, β, σε, X)f(Z | X, γ, σν , ).

This factorization implies a complete separation of the parameter sets; specifically, in-
dependent priors on the regression parameters π(β, γ, α) = π(β)π(γ)π(α) imply that
only the response equation is used in estimating β and α.

It is possible, as investigated in Wang et al. (2012), to incorporate information
concerning γ into the inference for β via a joint prior π(β | γ)π(γ) which would then
be updated by the treatment data as π(γ | Z) whereupon it can be incorporated with
the response likelihood via the integrated prior π(β | Z) =

∫
γ
π(β | γ)π(γ | Z). Our

approach will be more direct, placing widely-used independent priors in a transformed
parameter space.

Specifically, we introduce the following transformation:

⎛
⎝ α
β + αγ

γ

⎞
⎠ →

⎛
⎝ α
βd

βc

⎞
⎠ , (5)

which yields the model

Selection Eq.: Z = Xβc + ε, ε ∼ N(0, σ2
ε ),

Response Eq.: Y = α(Z −Xβc) + Xβd + ν, ν ∼ N(0, σ2
ν).

(6)

Our approach will be to place independent regularization priors over βc and βd and
to update our prior using the likelihood of both of the above equations.

This parametrization tidily separates the distinct roles that covariates can play in a
regression analysis of causal effects. Specifically, in previous literature, a “prognostic”
or “predictive” variable refers to variables Xj with βc,j = 0, βd,j �= 0 and “confounder”
refers to variables Xj with βc,j �= 0, βd,j �= 0. Here we refer to a confounder as any
variable with βc,j �= 0, with the understanding that this is a necessary but not sufficient
condition to be a confounding variable in the usual sense. Likewise, the term “direct
effect” has other meanings in some related literature; here we will use it simply to refer
to variables with βd,j �= 0. Moreover, our parametrization makes transparent how the
linear regression (the response equation) “controls for” confounding: the parameter α
gives the rate of change in the response as a function of changes in treatment level due
to “random fluctuation” (ε = Z − Xβc). Intuitively, with βc and X in hand, we have
access to a randomized experiment from which to infer α. Crucially, the Z likelihood
enforces this interpretation of βc and hence α.

Note also that this transformation leaves the likelihood unchanged. In particular, if
one fits the selection equation via OLS and then substitutes the associated residuals into
then response equation and then fits OLS, the resulting estimate of α will be exactly as
if one used the original parameterization and fit the model via a single application of
OLS. However, in terms of imposing regularization, the two parametrizations are quite
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different – under our transformation the selection equation likelihood plays a role in
dictating the degree of posterior shrinkage, because βc appears in both likelihoods.

Finally, note that this parametrization greatly mitigates the bias of α̂: given βc, the
expression for the bias under a flat prior for α and a standard normal prior for βd is

bias(α̂) = −
(
(rtr)−1rtX

)
(Ip +Xt(X− X̂R))

−1βd, (7)

where r = z − Xβc. By construction, (RtR)−1RtX will be close to the zero vector,
because Ri = Zi − Xiβc is independent of Xi. Of course, βc (and hence R) is not
known, but the new model is conditionally approximately unbiased for α and the Z
likelihood provides information on βc. In fact, expressions (3) and (7) indicate that the
naive model will have higher bias the stronger the confounding (as measured by small
σε), which is exactly when the new parametrization has more information about βc and
so will be closer to unbiased. This observation is borne out in the simulation studies
below.

3 Simulation studies

This section reports simulation studies which demonstrate the success of the reparametr-
ized model in avoiding the mis-identified shrinkage of naive regularization. The four
methods being compared are ordinary least squares (OLS) applied to the response
equation, “naive regularization” which applies a shrinkage prior over β and uses only
the response equation likelihood, the new approach, which places independent shrinkage
priors over βc and βd and uses both the response and treatment likelihoods, and “oracle
OLS” which performs OLS using only the variables with non-zero coefficients. Note that
oracle OLS is not possible to implement in applied problems. Non-informative priors
over the remaining parameters are the same for both Bayesian approaches: α ∝ 1,
σε ∝ 1/σε, σν ∝ 1/σν .

In this paper, the shrinkage prior we employ is

π(βj) ∝
1

v
log

(
1 +

4

(βj/v)2

)
,

π(v) ∼ C+(0, 1),

(8)

where v is a global scale parameter common across all elements j = 1, . . . p, and C+(0, 1)
denotes a folded standard Cauchy distribution. This prior is a close proxy of the horse-
shoe prior of Carvalho et al. (2010). Such priors have proven empirically to be a fine
default choice for regression coefficients: they lack hyperparameters, forcefully separate
strong from weak predictors, and exhibit robust predictive performance. This modified
representation permits the model to be fit using an elliptical slice sampler of Hahn
et al. (2016); as reported there, when p = 1000 this sampler can produce 10,000 poste-
rior samples in less than a minute (for any sample size strictly larger than p). We defer
the computational details of our approach to the Supplementary Appendix (Hahn et al.,
2016). We stress, however, that the key patterns revealed in our simulation study are a
byproduct primarily of our reparameterization, and can be expected to arise under any
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Bias Coverage I.L. MSE
New Approach 0.0024 0.959 0.1754 0.002
OLS 0.0014 0.96 0.1786 0.002
Naive Regularization 0.0479 0.35 0.0774 0.0053
Oracle OLS 0.0015 0.958 0.1738 0.0019

Table 1: Wang et al. (2012): Simulation Study 1.

Bias Coverage I.L. MSE
New Approach 0.0034 0.955 0.201 0.0027
OLS -0.002 0.956 0.2022 0.0026
Naive Regularization 0.0822 0.597 0.1889 0.0097
Oracle OLS -1e-04 0.94 0.1985 0.0028

Table 2: Wang et al. (2012): Simulation Study 2.

similar regularization prior. Although not reported here, simulation studies were also
conducted under ridge priors (with empirical Bayes selection of the shrinkage parame-
ter) and the basic conclusions do not change under these variations. We also include one
simulation study using point-mass model selection priors (using within-model g-priors)
for applications where p > n.

3.1 Wang et al. (2012) simulations

In this section, we consider two simulations from the analysis of Wang et al. (2012).
In the first simulation, the true model for the data is: Yi = αZi + β1X1i + β2X2i + εi,
where i = 1, . . . , 1000 and εi ∼ N(0, 1). The vector of treatment and covariates is
distributed as (Zi, X1i, X2i) ∼ N(0,Σ) where Σkk = 1 for k = 1, 2, 3, Σ12 = Σ21 = ρ,
and Σ13 = Σ31 = Σ23 = Σ32 = 0. The potential confounders are (X1, X2) with 49
additional independent random variables drawn from a standard normal. We set the
parameters as ρ = 0.7 and α = β1 = β2 = 0.1 and generate 1000 data sets for analysis.

The results from the first simulation are displayed in Table 1. We show average bias,
interval length, and mean squared error across all generated data sets as well as the
probability of covering the true treatment effect (coverage).

In the second simulation, a larger set of potential confounders is considered, and
they are correlated with both the treatment and response variables. The true model
is: Yi = αZi + β1X1i + · · · + β14X14i + εi, where i = 1, . . . , 1000 and εi ∼ N(0, 1).
The vector of treatment and covariates is distributed as (Zi, X1i, . . . , X7i) ∼ N(0,Σ).
The covariance matrix Σ is designed so that weak and strong correlations among the
treatment and confounders exist. We set Σkl = 1 if k = l and Σkl = ρk+l−2 if k �= l and
k, l ∈ {1, . . . , 8}. The remaining covariates are (X8, . . . , X14) are drawn from a standard
normal. The entire set of potential confounders is X1, . . . , X14 with 43 additional random
variables drawn from a standard normal. Similar to the first simulation, we set the
parameters as ρ = 0.7 and α = β1 = · · · = β14 = 0.1 and again consider 1000 replications
of this data set (Table 2).
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In both simulations, naive regularization performs poorly in coverage and is severely
biased. The new approach successfully reduces bias and has comparable performance to
OLS in coverage, statistical power as measured by interval length, and mean squared er-
ror. The similar performance of our method and OLS in this case is due to the relatively
large sample size for the given signal-to-noise level (Wang et al. (2012) report nearly
identical results as well). In the following section, we construct a simulation that shows
when the data generating process has certain realistic properties, the new approach can
outperform OLS in interval length and mean squared error (while naive regularization
continues to underperform).

3.2 Further simulations: shrinkage estimation in the presence of
confounding

In this section, we show results from a simulation designed to capture a variety of
scenarios a data analyst may face. We consider changing the relative strengths of the
confounding and direct effects as well as the number of such variables. Specifically, we
use the two equation model (6) to generate our data. We set the marginal variance of
the treatment and response variables to one, var(Z) = var(Y ) = 1, and we center and
scale the control variables X to have mean zero and unit variance.

To ensure we consider a range of data compositions, we parametrize our simulations
using an ANOVA (analysis of variance) style decomposition. Defining the 
-2 norms
(squared Euclidean distance) of the confounding and direct effects as ρ2 = ‖βc‖22 and
φ2 = ‖βd‖22, we may decompose the marginal variances as

var(Z) = ρ2 + σ2
ε ,

var(Y ) = α2(1− ρ2) + φ2 + σ2
ν ,

= κ2 + φ2 + σ2
ν ,

(9)

because the control variables are standardized. Fixing the marginal variances to one
implies σ2

ε = 1−ρ2 and σ2
ν = 1−α2(1−ρ2)−φ2. This decomposition admits the following

interpretation: ρ2 is the percentage of the treatment’s variance due to confounding
(strength of the confounding effect), φ2 is the percentage of the response variance due
to the direct impact of the control variables on the response (strength of the direct
effect), and κ2 := α2(1 − ρ2) is the percentage of the response variance due to quasi-
experimental variation of the treatment variable.

Next, observe that as the confounding becomes stronger (ρ2 getting larger), the
independent variation from which we infer the treatment effect (Z − Xβc) becomes
smaller (1 − ρ2). This means that for a fixed level of treatment effect, α, and a fixed
marginal variance, stronger confounding makes treatment effect inference harder in that
the residual variance becomes correspondingly larger: 1− α2(1− ρ2)− φ2. This makes
it more difficult to get a clear picture of whether or not the confounding per se is
making the problem difficult, or if problems with strong confounding just happen to be
more difficult in this artificial way. To avoid this problem, we fix κ2 := α2(1− ρ2) to a
constant, and allow α to vary as ρ2 is varied. In this way we can examine the impact
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ρ2 Bias Coverage I.L. MSE
0.1 New Approach -0.0032 0.943 0.2357 0.0037

OLS -0.0016 0.951 0.2477 0.004
Naive Regularization -0.0112 0.895 0.2089 0.0037
Oracle OLS 0.0023 0.946 0.2173 0.0031

0.3 New Approach -0.0047 0.95 0.2751 0.0047
OLS -0.0018 0.951 0.2808 0.0052
Naive Regularization -0.0355 0.848 0.2293 0.0057
Oracle OLS 0.0026 0.946 0.2464 0.004

0.5 New Approach -3e-04 0.963 0.3345 0.0066
OLS -0.0022 0.951 0.3323 0.0072
Naive Regularization -0.0768 0.746 0.2631 0.012
Oracle OLS 0.0031 0.946 0.2915 0.0056

0.7 New Approach 0.0084 0.964 0.4374 0.0113
OLS 0.0024 0.944 0.4303 0.0123
Naive Regularization -0.1559 0.543 0.3292 0.0346
Oracle OLS 0.004 0.946 0.3764 0.0093

0.9 New Approach -0.004 0.972 0.7403 0.0292
OLS 0.0045 0.954 0.7469 0.0351
Naive Regularization -0.4482 0.231 0.4779 0.2391
Oracle OLS 0.0069 0.946 0.6519 0.0278

Table 3: n = 100, p = 30, k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.

of confounding for a fixed difficulty of inference (as measured by the residual variance,
which is held fixed at 1− κ2 − φ2).

In our simulations, we fix a decomposition of the response variance given in (9) and
vary the strength of the confounding effect, ρ2. This amounts to specifying values for
κ2, φ2, and σ2

ν that sum to one, and simulating data sets for several values of ρ2 between
0 and 1. Again, because κ2 = α2(1− ρ2) is fixed, as ρ2 varies, α will vary as well.

Next, the components of βc and βd must be specified. The nonzero entries of each
identify which Xi’s are confounders, direct effects, and both, as previously defined. We
define the first k elements of X to be confounders, the next k to be both confounders
and direct effects, and the final k elements to be direct effects. We achieve this in our

simulation by setting β1:2k
c to ones and β

(k+1):3k
d ∼ N(0, 1). These vectors are then

rescaled to have magnitudes ρ2 and φ2, respectively. This sets the overall β vector
(β = βd − αβc) to have 3k nonzero entries. (Note that under continuous priors for βc

and βd, every variable is a confounder and no variables are strictly prognostic.)

Let n be the number of observations and p be the number of columns of X. In our
simulation, we set n = 100, 50 and p = 30. Additionally, we consider the following
response variance decompositions: {κ2 = 0.05, φ2 = 0.7, σ2

ν = 0.25}, {κ2 = 0.05, φ2 =
0.05, σ2

ν = 0.9} and vary ρ2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Tables 3 and 4 show results for the variance decomposition {κ2 = 0.05, φ2 = 0.7, σ2

ν =
0.25} and n = 100 and 50, respectively. In this scenario, the direct effect drives 70%
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ρ2 Bias Coverage I.L. MSE
0.1 New Approach 0.0082 0.918 0.3632 0.0105

OLS -0.0017 0.944 0.4785 0.0144
Naive Regularization -0.0068 0.835 0.2957 0.0097
Oracle OLS -0.001 0.952 0.3235 0.0065

0.3 New Approach -1e-04 0.94 0.4203 0.0128
OLS -0.002 0.944 0.5425 0.0186
Naive Regularization -0.035 0.837 0.3191 0.0126
Oracle OLS -0.0011 0.952 0.3668 0.0084

0.5 New Approach -0.0047 0.93 0.5183 0.0196
OLS -0.0023 0.944 0.6419 0.026
Naive Regularization -0.0869 0.738 0.3555 0.0222
Oracle OLS -0.0014 0.952 0.434 0.0117

0.7 New Approach 0.0056 0.937 0.6926 0.0341
OLS 0.0046 0.934 0.8204 0.0478
Naive Regularization -0.189 0.539 0.4033 0.0565
Oracle OLS -0.0018 0.952 0.5604 0.0195

0.9 New Approach -0.0772 0.959 1.1572 0.0804
OLS -0.0156 0.931 1.4347 0.1402
Naive Regularization -0.5419 0.102 0.4868 0.3297
Oracle OLS -0.003 0.952 0.9706 0.0585

Table 4: n = 50, p = 30, k = 3. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.

of variance in the response while the treatment effect drives 5%. Tables displaying the
numbers used to generate these plots are shown in the Supplementary Appendix. Similar
to the Wang et al. (2012) example, we compare the new, OLS, and naive regularization
approaches in the presence of weak to strong confounding (ρ2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}).
Again, the oracle OLS result is given for comparison. The four metrics we evaluate are
bias, mean squared error (MSE), interval length (I.L.), and coverage. First, note the
poor performance of the naive approach. As confounding strength increases, bias grows
and coverage decays exponentially for both sample sizes. In addition, MSE explodes for
increasing confounding strength. Nevertheless, the naive approach does produce a small
interval length resulting from the regularization prior.

As Table 3 demonstrates, the new approach and OLS are comparable when the
data size is large relative to the number of potential confounders with MSE and I.L.
gains using the new approach when confounding strength is large (ρ2 > 0.9). When the
data size is smaller (Table 4), the gains of using the new approach over OLS are seen
across the board. The new approach outperforms OLS in both interval length and MSE
for confounding levels varying from weak to strong. This is the benefit of “betting on
sparsity” when the data generating process is in fact sparse.

Tables 5 and 6 show results for a different response variance configuration: {κ2 =
0.05, φ2 = 0.05, σ2

ν = 0.9}. In this scenario, the treatment and direct effects contribute
5% each to the response variance and the remaining 90% is residual noise. This is a
problem that, using any method for estimation, is inferentially difficult because of the
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ρ2 Bias Coverage I.L. MSE
0.1 New Approach -0.0053 0.93 0.4137 0.0126

OLS -0.0031 0.951 0.4699 0.0145
Naive Regularization -0.027 0.434 0.1528 0.0178
Oracle OLS 0.0044 0.946 0.4123 0.0111

0.3 New Approach -0.0101 0.933 0.472 0.0176
OLS -0.0035 0.951 0.5329 0.0186
Naive Regularization -0.075 0.373 0.1625 0.0256
Oracle OLS 0.005 0.946 0.4675 0.0143

0.5 New Approach -0.001 0.933 0.5751 0.0245
OLS -0.0041 0.951 0.6305 0.026
Naive Regularization -0.1407 0.304 0.1751 0.0411
Oracle OLS 0.0059 0.946 0.5532 0.02

0.7 New Approach 0.0044 0.95 0.7509 0.0368
OLS -0.0049 0.953 0.8156 0.0394
Naive Regularization -0.265 0.134 0.1801 0.0918
Oracle OLS 0.0076 0.946 0.7141 0.0333

0.9 New Approach -0.01 0.939 1.2784 0.1131
OLS -0.0022 0.942 1.416 0.1345
Naive Regularization -0.6114 0.002 0.1841 0.3983
Oracle OLS 0.0132 0.946 1.2369 0.0999

Table 5: n = 100, p = 30, k = 3. κ2 = 0.05. φ2 = 0.05. σ2
ν = 0.9.

ρ2 Bias Coverage I.L. MSE
0.1 New Approach 0.0021 0.919 0.6073 0.0306

OLS -0.0119 0.93 0.8888 0.0528
Naive Regularization -0.0291 0.443 0.2207 0.0352
Oracle OLS -0.0019 0.952 0.6138 0.0234

0.3 New Approach -0.0033 0.909 0.6918 0.0421
OLS -0.0038 0.944 1.0294 0.0668
Naive Regularization -0.0651 0.402 0.237 0.0428
Oracle OLS -0.0022 0.952 0.696 0.0301

0.5 New Approach -0.011 0.894 0.8191 0.064
OLS 0.0071 0.927 1.2041 0.103
Naive Regularization -0.1354 0.349 0.233 0.0577
Oracle OLS -0.0026 0.952 0.8235 0.0421

0.7 New Approach -0.028 0.904 1.0842 0.105
OLS -8e-04 0.938 1.5533 0.1603
Naive Regularization -0.2752 0.217 0.2474 0.1163
Oracle OLS -0.0033 0.952 1.0632 0.0702

0.9 New Approach -0.1078 0.948 1.8128 0.2303
OLS 0.0291 0.942 2.6708 0.4893
Naive Regularization -0.6045 0.015 0.2576 0.4096
Oracle OLS -0.0058 0.952 1.8415 0.2106

Table 6: n = 50, p = 30, k = 3. κ2 = 0.05. φ2 = 0.05. σ2
ν = 0.9.
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ρ2 Bias Coverage I.L. MSE
0.1 New Approach -0.0038 0.939 0.2484 0.0043

OLS -0.0014 0.944 0.2497 0.0041
Naive Regularization -0.0094 0.948 0.241 0.0039
Oracle OLS -0.0014 0.944 0.2497 0.0041

0.3 New Approach -0.0051 0.94 0.2895 0.0057
OLS 0.0029 0.929 0.2827 0.0057
Naive Regularization -0.0268 0.921 0.2638 0.0055
Oracle OLS 0.0029 0.929 0.2827 0.0057

0.5 New Approach -0.012 0.966 0.351 0.007
OLS -0.001 0.946 0.3327 0.007
Naive Regularization -0.0715 0.85 0.2964 0.0103
Oracle OLS -0.001 0.946 0.3327 0.007

0.7 New Approach -0.0105 0.96 0.4614 0.0126
OLS -1e-04 0.946 0.4279 0.0124
Naive Regularization -0.1587 0.563 0.3489 0.0341
Oracle OLS -1e-04 0.946 0.4279 0.0124

0.9 New Approach -0.0496 0.963 0.7862 0.0351
OLS -0.012 0.953 0.748 0.0369
Naive Regularization -0.5131 0.01 0.4303 0.2764
Oracle OLS -0.012 0.953 0.748 0.0369

Table 7: n = 100, p = 30, k = 10. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.

low signal-to-noise ratio of the response. In both the large data set (n = 100, Table 5)
and small data set (n = 50, Table 6) relative to the number of potential controls, we
again see underperformance of the naive approach.

In contrast to the previous example with a strong direct effect, the weak direct
effect contributes to good performance of the new approach relative to OLS for both
n = 100 and n = 50. Again, we see that the new approach has increased power through
smaller interval lengths and lower mean squared error, especially for data sets with
strong confounding. And again, we see the benefit of “betting on sparsity” when the
data generating process is in fact sparse.

3.3 Dense case

In tableTables 7 and 8, the same simulation study as before is run with {p = 30, k = 10}
and {p = 30, k = 30}, respectively. For the k = 10 case, βc and βd each have 20 nonzero
entries and 10 zero entries and are sparse with respect to our transformed model (6).
However, β itself is dense. For the k = 30 case, we abuse our simulation construction
slightly and construct both βc and βd (and thus β) as fully dense vectors with all
p = 30 components nonzero. In both cases, note that OLS and Oracle OLS are identical
methods. Two salient patterns emerge from this simulation. First, the new method
performs essentially on par with OLS; there is no benefit for the bet on sparsity, but
their is no major penalty either. Second, the naive response-only regularized regression
continues to exhibit dismal performance.
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ρ2 Bias Coverage I.L. MSE
0.1 New Approach 0.0023 0.942 0.2563 0.0045

OLS 0.0013 0.945 0.249 0.0041
Naive Regularization -0.0025 0.947 0.2525 0.004
Oracle OLS 0.0013 0.945 0.249 0.0041

0.3 New Approach -0.0048 0.954 0.2996 0.0057
OLS -0.0039 0.956 0.2841 0.0052
Naive Regularization -0.0215 0.937 0.28 0.0056
Oracle OLS -0.0039 0.956 0.2841 0.0052

0.5 New Approach 0.003 0.965 0.3653 0.0078
OLS 9e-04 0.952 0.3334 0.0071
Naive Regularization -0.0411 0.905 0.3171 0.0091
Oracle OLS 9e-04 0.952 0.3334 0.0071

0.7 New Approach 0.0042 0.954 0.4813 0.0149
OLS 3e-04 0.929 0.4328 0.014
Naive Regularization -0.1147 0.772 0.3854 0.025
Oracle OLS 3e-04 0.929 0.4328 0.014

0.9 New Approach -0.0329 0.965 0.8018 0.0363
OLS -0.0053 0.942 0.7433 0.0375
Naive Regularization -0.4212 0.155 0.5178 0.2052
Oracle OLS -0.0053 0.942 0.7433 0.0375

Table 8: n = 100, p = 30, k = 30. κ2 = 0.05. φ2 = 0.7. σ2
ν = 0.25.

3.4 p > n case

In order to explore the behavior of our proposal in a p > n set-up, we extend the
first simulation analysis of Wang et al. (2012). Now, the true model for the data is:
Yi = αZi + β1X1i + β2X2i + εi, where i = 1, . . . , 30 and εi ∼ N(0, 0.04). The vector
of treatment and covariates is distributed as (Zi, X1i, X2i) ∼ N(0,Σ) where Σkk = 1
for k = 1, 2, 3, Σ12 = Σ21 = ρ, and Σ13 = Σ31 = Σ23 = Σ32 = 0. The potential
confounders are (X1, X2) with 33 additional independent random variables drawn from
a standard normal, for a total of 35 control variables. We set the parameters as ρ = 0.7
and α = β1 = β2 = 0.1 and generate 1000 data sets for analysis.

In the p > n setting it is helpful to return to a variable-selection model. Specifically,
we employ normal g-priors (Zellner, 1986) on both βc and βd with point-masses at zero.
We define g through local empirical Bayes (Liang et al., 2008) with model probabilities

are defined by p(M) ∝
(
p
2

)−1
1p<pmax where pmax defines the maximum number of

non-zero elements in both βc and βd (separately).

The primary reason for adopting this model in this setting is that it allows to di-
rectly handle exact-sparsity via the pmax parameter; we can examine how the method
behaves as this parameter changes relative to the true level of sparsity (two non-zero
elements out of 35, in this case). A secondary reason is that the elliptical slice sampler
we use for the continuous prior model would require special modification for the p > n
setting, because the maximum likelihood estimate is not well-defined. As a side benefit,
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p = 35, n = 30. pmax = 3 Bias Coverage I.L. MSE
New Approach 0.055 0.87 0.301 0.008
Naive Regularization 0.093 0.64 0.239 0.012
p = 35, n = 30. pmax = 5 Bias Coverage I.L. MSE
New Approach 0.056 0.88 0.319 0.010
Naive Regularization 0.097 0.60 0.239 0.013
p = 35, n = 30. pmax = 10 Bias Coverage I.L. MSE
New Approach 0.059 0.88 0.335 0.010
Naive Regularization 0.099 0.63 0.255 0.013
p = 35, n = 30. pmax = 20 Bias Coverage I.L. MSE
New Approach 0.068 0.86 0.435 0.016
Naive Regularization 0.103 0.65 0.255 0.015

Table 9: A variable selection prior used in the p > n setting still reveals the benefit of the
new parameterization over the naive response-only model. In this simulation the true
data generating process had only two non-zero regression coefficients; accordingly, the
model performs better when pmax is smaller, according to mean squared error (MSE).
In all cases except pmax = 20, the MSE is lower than the naive model. In every case, the
new model has better coverage. The naive model has smaller posterior credible intervals,
but greater bias.

this simulation allows us to demonstrate and emphasize that the benefits of the new
parameterization are fundamentally prior-agnostic; it is not the specific choice of prior
that matter, rather it is the ability to specify the prior in terms of βc and βd. It is worth
noting that the local empirical Bayes approach can be quite slow when pmax is large;
when pmax = 1000 it will take more than a dozen minutes to obtain ten thousand sam-
ples (whereas the horseshoe implementation discussed above would take approximately
one minute).

Table 9 shows the results of this study, where the same prior is used for β (the
naive approach) versus separately for both βc and βd in the new parametrization. The
new model performs best when pmax is smaller (closer to the true number of non-zero
coefficients), according to mean squared error. In all cases except pmax = 20, the MSE
of the new model is lower than the naive model. In every case, the new model has
better coverage. The naive model has smaller posterior credible intervals, but greater
bias.

4 Empirical illustration: abortion and crime

In this section, we consider the relationship between legalized abortion and crime rates,
using data first analyzed in Donohue III and Levitt (2001) and widely publicized in the
popular book Levitt and Dubner (2010). Donohue III and Levitt (2001) propose that
their data tell an intriguing story: unwanted children are more likely to grow up to be
criminals, so legalized abortion, which leads to fewer unwanted children, leads to lower
levels of crime in society. They conduct three analyses, one each for three different types
of crime: violent crime, property crime, and murders.
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Here, in the spirit of the similar reanalysis of Belloni et al. (2014), we reanalyze the
Donohue III and Levitt (2001) data using a substantially more elaborate model, and
observe the impact regularization has on the resulting conclusions. Specifically, we will
compare four estimation approaches: one using the original control variables and OLS,
one using an expanded covariate set (which includes many interactions) fit with OLS,
one using the expanded covariate set fit with a naively regularized Bayesian regression,
and one using the expanded covariate set fit with a regularized Bayesian model using
our new parametrization.

The response variable, Y , is per capita crime rates (violent crime, property crime,
and murders) by state, from 1985 to 1997 (inclusive). The treatment variable, Z, is the
“effective” abortion rate. This metric is an averaged abortion rate, weighted by criminal
age at the time of arrest (to account for the fact that crimes committed by criminals
should be associated with abortion rates at the time of their births).

As control variables, X, Donohue III and Levitt (2001) include a host of state and
year specific attributes that could otherwise contribute to the observed crime rates:

• prisoners per capita (log),

• police per capita (log),

• state unemployment rate,

• state income per capita (log),

• percent of population below the poverty line,

• generosity of Aid to Families with Dependent Children (lagged by fifteen years),

• concealed weapons law,

• beer consumption per capita.

Including state and year dummy variables brings the total number of control variables
to 66. For additional details concerning how these attributes are defined and where they
were obtained, see the original paper (Donohue III and Levitt, 2001).

Our expanded model includes the following additional control variables:

• interactions between the original eight controls and year,

• interactions between the original eight controls and year squared,

• interactions between state effects and year,

• interactions between state effects and year squared.

These additional variables allow the impact of the original eight covariates on crime
rate to change flexibly across time (according to a quadratic trend) and allows for the
state specific crime rates to likewise change over time (in terms of an offset from overall
state and year rates according to a quadratic trend). When allowing for this degree of
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Property Crime Violent Crime Murder
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

OLS -0.110 -0.072 -0.171 -0.090 -0.221 -0.040
new approach -0.113 -0.073 -0.182 -0.098 -0.222 -0.039
naive regularization -0.075 -0.010 0.079 0.301 -0.186 0.085

Table 10: Credible/confidence intervals (95%) for the Donohue III and Levitt (2001)
example with original controls (p = 66, n = 624). On the smaller set of original controls,
our new approach gives similar credible intervals as the OLS confidence interval. In this
case, already the naive regularization approach shows signs of bias, although the impact
is minor.

Property Crime Violent Crime Murder
2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

OLS -0.226 0.019 -0.374 0.336 -0.125 1.763
new approach -0.038 0.014 -0.114 0.053 -0.081 0.279
naive regularization 0.007 0.129 0.011 0.412 -0.227 0.116

Table 11: Credible/confidence intervals (95%) for the Donohue III and Levitt (2001)
example with augmented controls (p = 176, n = 624). With the enlarged set of con-
trol variables, the new approach and OLS show notable differences, specifically our new
regularized Bayesian approach has markedly smaller credible intervals. The naive reg-
ularization approach disagrees on the directionality of the effect compared to the other
two methods, consistent with the bias observed in our simulation studies.

flexibility, estimation becomes quite challenging, with just n = 624 observations and
p = 176 control variables.

Tables 10 and 11 show our posterior inference compared to OLS and naive regular-
ization. First, we note that the reported OLS results on the original covariate set are
very similar to the results given in Donohue III and Levitt (2001), although they used
weighted least squares to adjust for differing state populations.

Second, using the original covariate set, the results of our new method are broadly
in agreement with OLS. Already in this case we observe signs of the naive regularization
approach being biased.

Finally, using the augmented covariate set, we observe that OLS no longer identifies
the originally reported negative effect. However, the interval it returns is not tight about
zero, indicating that there is not enough signal in the data to determine the impact of
abortion on crime rates. Our new approach, by comparison, has much smaller credible
interval, although they also include zero. Notably, the asymmetry (with respect to zero)
of the interval of OLS and our approach coincide, while naive regularization is off-
centered in the opposite direction. In fact, naive regularization excludes zero in the case
of property and violent crime, and reports the reverse of the effect in the original study.
This relationship between the three methods bears out the patterns observed in our
simulation studies and suggests that the naively regularized method is misestimating
the treatment effect as a result of misallocated shrinkage.
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5 Discussion

In this paper, we have documented the perhaps counterintuitive fact that naively applied
shrinkage priors can dramatically corrupt inference concerning treatment effects and
have developed a regularized Bayesian regression model that avoids this pitfall, while
still boasting the usual advantages of shrinkage estimation.

In this section we conclude with additional discussion concerning the mechanism
by which this parametrization improves estimation. Specifically, while it is explained
above that the new parametrization is designed to be approximately unbiased for α
(as a function of β), it is perhaps less clear that shrinkage priors on βc and βd are
not conferring some additional advantage. For example, adjusting for variables that
only associate with Z, but not with Y , is widely understood to decrease precision
in estimates of α (relative to the model that omits these variables from the regression
altogether). This phenomenon can be understood concretely through the lens of the new
parametrization. First, such variables have a direct parametric interpretation: βd = 0
and βc �= 0. Now, suppose that someone informs the analysts that a certain βd = 0 a
priori; in this event, one is better off running a regression to estimate α excluding the
variable Xj from the model because, intuitively, larger variation in the implied residuals
gives more heterogeneity to estimate α.

In fact, this intuition can be made more precise. Without loss of generality consider
the case of only one potential confounder, X. If βc and βd were both known, consider
estimating

α = E((Y −Xβd)(Z −Xβc))

from a sample (Yi, Zi, Xi), i = 1 . . . n. Some straightforward manipulation shows that

α = E(Y Z)− E(X2)βcβd.

In the Gaussian linear regression model, the sample moments n−1
∑

i YiZi and
n−1

∑
i X

2
i are sufficient statistics. From the above expression we observe that know-

ing that βd = 0 annihilates the second term involving data n−1
∑

i X
2
i ; the associ-

ated estimator has less sample variability because it is unaffected by sampling vari-
ation in n−1

∑
i X

2
i . However, any model that must estimate βd necessarily incorpo-

rates n−1
∑

i X
2
i and pays the price in precision. Therefore, the more prior mass about

βcβd = 0, the more limited will be the sampling variation due to n−1
∑

i X
2
i ; indepen-

dent zero-centered priors over βc and βd achieve that, while the use of fat-tailed priors
allows the data to speak.

At the same time, better estimate of βc is naturally obtained by incorporating the
sampling model for Z. Indeed, consider the case where βd is known and non-zero; one
need not use Z to obtain a consistent estimate of βc and α, but discarding the Z model
(presuming it is correctly specified) is simply throwing away available information, as βc

appears there. This is true especially if the signal-to-noise ratio in the selection equation
is much more favorable than that of the response equation (σν � σε). This is precisely
why our new parametrization pays dividends, because the naive parametrization implies
that the Z model is ignored. In other words, the new parametrization has an advantage
over single-equation approaches in terms of estimating βc, but not in terms of estimating
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βd; for which no essentially new data is being brought to bear, merely a strongly zero-
biased prior. (The extent to which this zero-bias is beneficial will presumably depend
on the true data generating process; this is the subject of ongoing investigation.)

Ongoing work looks at adapting the ideas in this paper to the nonlinear regression
models for treatment effect estimation; preliminary results are promising.

Supplementary Material

Supplement to “Regularization and confounding in linear regression for treatment effect
estimation” (DOI: 10.1214/16-BA1044SUPP; .pdf).
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