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ABSTRACT 
Bayesian reciprocal LASSO (BRL) is a recently proposed nonlocal regulariza-
tion method for Bayesian linear regression models. This paper develops a 
modified version of BRL, accommodating faster posterior sampling than 
published methods, by bypassing the use of auxiliary latent variables. We 
present a slice-within-Gibbs algorithm based on the elliptical slice sampler 
that matches the predictive accuracy of previous BRL implementations. 
Simulation studies and real data analyses show that the new method 
(XBRL) outperforms its Bayesian cousin (BRL) in out-of-sample prediction 
across a wide range of scenarios while offering the advantage of faster 
posterior computation. We have implemented the XBRL algorithm as part 
of the R package BayesRecipe available at: https://github.com/himelmallick/ 
BayesRecipe.
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1. Introduction

Bayesian statistics has long studied the problem of high-dimensional variable selection, which has 
led to a vast literature on Bayesian regularization priors with desirable statistical properties, exem-
plified by their successful utilization and omnipresence in a wide range of real-world application 
domains (Mallick and Yi 2013; Mallick 2015; Bhadra et al. 2019; Van Erp, Oberski, and Mulder 
2019; Bai, Rockov◆a, and George 2021). While traditional methods in this space have relied on 
spike and slab approaches and their computationally tractable extensions inspired by the popular 
class of global-local shrinkage priors, nonlocal priors have been recognized as a useful class of 
priors in recent years (Johnson and Rossell 2010, 2012; Nikooienejad, Wang, and Johnson 2016, 
2020; Shin, Bhattacharya, and Johnson 2018; Sanyal et al. 2019).

Compared to local priors, which preserve a non-zero probability at null parameter values, non-
local priors are identically zero whenever a model parameter is equal to its null value, leading to 
strong model selection and posterior consistency properties (Rossell and Telesca 2017; Shin, 
Bhattacharya, and Johnson 2018; Cao, Khare, and Ghosh 2020; Cao and Lee 2022). In particular, 
nonlocal priors discard spurious covariates faster as the sample size grows, while preserving expo-
nential learning rates to detect nontrivial coefficients (Rossell and Telesca 2017; Mallick et al. 
2021). Motivated by their appealing Bayesian model selection properties, global-local scale mix-
ture representations of nonlocal priors have recently gained momentum, which enable simple 
MCMC sampling, facilitating a flexible framework for coherent posterior inference (Rossell and 
Telesca 2017; Mallick et al. 2021).
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This paper proposes a computationally efficient posterior sampling scheme for Bayesian recip-
rocal LASSO (BRL) (Mallick et al. 2021), a recently proposed nonlocal prior, which is in turn a 
Bayesian analog of the frequentist reciprocal LASSO (rLASSO) regularization (Song and Liang 
2015; Song 2018). In particular, we consider the slice-within-Gibbs sampler based on the elliptical 
slice sampler (Murray, Adams, and MacKay 2010; Hahn, He, and Lopes 2019), which was 
recently developed for Gaussian linear regression in the context of local priors. Our new approach 
is motivated by the fact that existing software implementations for Bayesian rLASSO do not read-
ily scale well to problems with a large number of observations and predictors. Compared to pre-
vious Gibbs samplers that rely on case-specific latent variable representations (Mallick et al. 
2021), the new algorithm does not rely on auxiliary variables, which leads to faster posterior com-
putation than existing implementations while maintaining similar or better inferential accuracy. 
The rest of the paper is organized as follows. In Section XBRL methodology, we describe the 
algorithmic details of the proposed method, followed by the numerical results in Section 
Numerical Studies. In Section Conclusions, we conclude with further discussion in this context.

2. XBRL methodology

Without loss of generality, we consider the standard setup of a regression model that links a uni-
variate mean response y and p candidate predictors X through its linear predictor Xb, where y is 
the n⇥ 1 vector of responses, X is the n⇥ p matrix of standardized regressors, and b is the p⇥ 1 
vector of coefficients to be estimated (without the intercept). We consider the linear regression 
model

y à Xbá ✏, (1) 

where ✏ ⇠ NÖ0, r2IÜ: We assume the prior of b as pÖbjkÜ, and a standard conjugate inverse 
Gamma (IG) prior with shape parameter a=2 and scale parameter b=2 for the residual variance, 
i.e. r2 ⇠ IGÖa=2, c=2Ü: For the prior on b, researchers are typically interested in regularization 
priors rather than the standard conjugate normal prior to induce sparsity or shrinkage of the 
coefficients for stable out-of-sample predictions. Traditional regularization priors include Bayesian 
LASSO or horseshoe prior; however, they usually assume the highest prior density around zero (Park 
and Casella 2008; Carvalho, Polson, and Scott 2010). Mallick et al. (2021) proposed an alternative 
nonlocal prior that imposes high prior densities away from zero, named Bayesian Reciprocal LASSO 
and this paper focuses on implementing an efficient sampling algorithm for BRL. The rest of this sec-
tion is organized as follows. We first introduce the major ingredients such as the frequentist recipro-
cal LASSO (Section Reciprocal LASSO), BRL (Section BRL), and the slice-within-Gibbs sampler for 
Gaussian linear regression (Section Slice-within-Gibbs sampler for Gaussian linear regression). Then, 
we introduce our main algorithm (XBRL) for efficient sampling of Bayesian Reciprocal LASSO regres-
sion (Sections XBRL, Selection of the hyperparameter k, Implementation).

2.1. Reciprocal LASSO

For a general model, the rLASSO solves the following regularization problem (Song and Liang 
2015):

QÖbÜ à min
b

LÖbÜ á k
Xp

jà1

1
jbjj

I bj 6à 0
�  

, (2) 

where LÖbÜ denotes the negative log-likelihood, IÖ:Ü denotes an indicator function, and k > 0 is 
the tuning parameter that controls the degree of penalization. As compared to traditional penal-
ization functions that are usually symmetric about 0, continuous and non-decreasing in Ö0,1Ü, 
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the rLASSO penalty functions are decreasing in Ö0,1Ü, discontinuous at 0, and converge to infin-
ity when the coefficients approach zero (Figure 1). Song and Liang (2015) proposed reciprocal 
LASSO as a new class of reciprocal regularization penalty functions and argued that these distin-
guishing properties of reciprocal LASSO make it a very attractive method for variable selection as it 
can produce sparser and more accurate coefficient estimates, and catch the true model with a higher 
probability. Moreover, reciprocal LASSO has a one-to-one correspondence with nonlocal priors 
(Johnson and Rossell 2010, 2012; Rossell and Telesca 2017), which have appealing Bayesian model 
selection properties for high-dimensional estimation. This motivated Mallick et al. (2021) to develop a 
Bayesian analog of the reciprocal LASSO method, namely, BRL, by formulating the rLASSO penalty 
as a nonlocal prior. Unlike classical rLASSO regression which summarizes inference using a single 
point estimate, BRL provides standard error estimates of the regression parameters, facilitating uncer-
tainty quantification. We argue that this one-to-one correspondence makes reciprocal regularization 
particularly attractive as it facilitates complementary investigation of reciprocal penalty functions from 
two disparate but interconnected perspectives (i.e. frequentist and Bayesian), as has been the case 
with non-reciprocal regularization over the last two decades or so (Park and Casella 2008; Kyung 
et al. 2010; Mallick and Yi 2013; Mallick et al. 2021).

2.2. BRL

Mallick et al. (2021) noted that the rLASSO estimates for linear regression parameters can be 
interpreted as Bayesian posterior mode estimates when the priors on the regression parameters 
are assigned independent inverse Laplace distributions (with k > 0 as the scale parameter):

pÖbjkÜ à k
2b2 exp − k

jbj

⇢ �
I b 6à 0f g: (3) 

Motivated by the close connection between frequentist rLASSO and nonlocal priors, Mallick 
et al. (2021) proposed a computationally efficient Gibbs sampler (BRL) to solve the rLASSO 

Figure 1. Comparison of the LASSO and rLASSO penalty functions (left) and LASSO and rLASSO prior densities (right) for a single 
regression coefficient. The rLASSO penalty function assigns nearly zero coefficients infinite penalties, whereas the conventional 
LASSO penalty assigns nearly zero coefficients almost zero penalties. Similarly, the LASSO prior density assigns a high non-zero 
probability near zero, whereas the rLASSO priors are exactly zero near zero.
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problem taking advantage of the hierarchical global-local scale mixture representation of the 
inverse Laplace prior. In particular, Mallick et al. (2021) introduces the following latent variable 
formulation for BRL:

yn⇥1jX, b, r2 ⇠ NnÖXb, r2InÜ, 

bp⇥1js, u, r2 ⇠
Yp

jà1
NÖ0, r2s2

j ÜI jbjj >
r
uj

⇢ �
, 

sp⇥1jf ⇠
Yp

jà1
Exp Öf2

j =2Ü, 

fp⇥1ju ⇠
Yp

jà1
Exp 1

uj

✓ ◆
, 

up⇥1jk ⇠
Yp

jà1
GammaÖ2, kÜ, 

r2 ⇠ pÖr2Ü:

The above hierarchical formulation leads to the following posterior distributions:

bjy, X, s, f, u, k, r2 ⇠ NpÖÖX0X á T−1Ü−1X0y, r2ÖX0X á T−1Ü−1Ü
Yp

jà1
I jbjj >

r
uj

⇢ �
, 

s�1jy, X, b, f, u, k, r2 ⇠
Yp

jà1
Inverse-Gaussian

ÅÅÅÅÅÅÅÅÅ
f2

j r2

b2
j

vuut , f2
j

0

B@

1

CA, 

fjy, X, b, s, u, k, r2 ⇠
Yp

jà1
Gamma 2,

jbjj
r
á 1

uj

 ! !

, 

ujy, X, b, f, k, k, r2 ⇠
Yp

jà1
Exp ÖkÜI uj >

r
jbjj

⇢ �
, 

r2jy, X, b, f, k, u, k ⇠ Inverse-Gamma n − 1á p
2 , Rá b0T−1b

2

✓ ◆
I r2 < MinjÖb2

j u2
j Ü

n o
, 

where R à Öy − XbÜ0Öy − XbÜ and T à diagÖs1, :::, spÜ:
While BRL is an effective nonlocal regularization method for small-scale settings (Mallick et al. 

2021), the associated MCMC approach can be computationally inefficient for large-scale prob-
lems. This is particularly because the BRL algorithm relies on sampling from a mid-truncated 
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multivariate normal distribution (Kim 2007) and the use of latent variables, which can lead to 
suboptimal performance in high dimensions.

2.3. Slice-within-Gibbs sampler for Gaussian linear regression

Hahn, He, and Lopes (2019) proposed a slice-within-Gibbs sampler (SGS) based on the elliptical 
slice sampler (ESS) (Murray, Adams, and MacKay 2010) for posterior inference of Bayesian linear 
regression models with Gaussian errors and priors that can be evaluated up to a constant. The 
original ESS assumes a normal prior and an arbitrary likelihood and operates by drawing pro-
posals from the Gaussian prior and then accepting or rejecting them based on the non-Gaussian 
likelihood. However, the constraint of a Gaussian prior limited the wide adoption of the original 
elliptical slice sampler. Additionally, drawing proposals from the prior tends to result in a higher 
rejection rate when the likelihood is strong.

To address these issues, Hahn, He, and Lopes (2019) leverage the fact that the posterior of the 
coefficients for linear regression with Gaussian errors and arbitrary priors has a specific form. 
They propose the slice-within-Gibbs sampler, which combines the Gibbs sampler for updating 
the precision parameter with the ESS for updating the coefficients. This approach reduces the 
computational burden and allows for the efficient sampling of arbitrary priors. By using a slice 
sampler within the Gibbs sampler, the SGS can generate proposals that are more likely to be 
accepted, leading to better mixing and faster convergence. The model has the following form

pÖb j y, X, r2Ü / f Öy j b, X, r2IÜpÖbjkÜ (4) 

which is exactly a product of Gaussian and non-Gaussian components. This setting is ideal for 
the application of ESS, however, a few practical problems may exist.

First, the ESS samples all coefficients jointly. However, if the number of regressors is large, the 
ESS may reject the proposal, leading to high autocorrelation of the posterior samples. To over-
come this issue, SGS samples each of the coefficients bk conditional on all other coefficients, 
which we denote b−k in a Gibbs style, while each step implements the elliptical slice sampler. In 
specific, notice that the b à Öbk, b−kÜ has the following joint multivariate normal distribution

bk

b−k

" #

⇠ Np
b̂k

b̂−k

" #

, r2 Rk,k Rk,−k

R−k,k R−k,−k

" # !

, (5) 

where b̂k

b̂−k

" #

à b̂ (the OLS estimator) and Rk,k Rk,−k
R−k,k R−k,−k

 �
à ÖXTXÜ−1: Then the conditional dis-

tribution of any bk given all other b−k has the form NkÖ~bk, eRkÜ where
~bk à b̂k á Rk,−kR−1

−k,−kÖb
−k − b̂−kÜ, (6) 

eRk à r2 Rk,k − Rk,−kR−1
−k,−kR−k,k

⇣ ⌘
: (7) 

Although the choice of the subset k can be arbitrary, we prefer to sample one coefficient at a 
time for better mixing of the Markov chains.

Second, it is common to analyze data with more predictors than data observations, where the 
matrix XTX can be rank-deficient and thus the posterior

pÖb j y, X, rÜ / NYÖXb, r2ÜpÖbjkÜ

/ NbÖb̂, r2ÖXTXÜ−1ÜpÖbjkÜ,
(8) 

which relies on the inverse of the rank-deficient matrix. The algorithm tackles this case by 
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observing a trick that multiplies and divides the joint posterior by the same normal density,

pÖbjy, X, r2Ü / NpÖXb, r2ÜNÖ0, cr2Ü pÖbjkÜ
NÖ0, cr2IÜ

/ NpÖ�b, r2ÖXTX á c−1IÜ−1Ü pÖbjkÜ
NÖ0, cr2IÜ :

(9) 

where �b à ÖXTX á c−1IÜ−1XTy: Therefore, the covariance matrix r2ÖXTX á c−1IÜ−1 is full rank 
and thus the ellipse is well-defined. Rather than evaluating the prior density pÖbjkÜ, we consider 

pÖbjkÜ
NÖ0,cr2IÜ instead to adjust for the extra term. Hahn, He, and Lopes (2019) recommended that small 
c near one works fine in most cases.

2.4. XBRL

In order to build a more efficient posterior sampling algorithm for BRL, we implemented the 
SGS sampler described in Section Slice-within-Gibbs sampler for Gaussian linear regression by 
taking pÖbjkÜ as the rLASSO prior, described in Section BRL. The new sampler, which we refer 
to as Accelerated Bayesian Reciprocal LASSO (XBRL), takes advantage of the special structure of 
the linear regression likelihood, allowing it to lower the time for iteration than the original BRL 
method that relies on latent variable formulation of the reciprocal LASSO prior as described in 
Section BRL.

2.5. Selection of the hyperparameter k

For both BRL and XBRL, we extend the procedure of Shin, Bhattacharya, and Johnson (2018) for 
nonlocal priors to the rLASSO prior and select k such that the L1 distance between the posterior 
distribution on the regression parameters under the null distribution (i.e. bà 0) and the rLASSO 
prior distributions on these parameters is constrained to be less than a specified value (e.g. 1ÅÅpp ). 
By choosing an optimal k so that the intersection of these two null distributions falls below a 
specified threshold, this procedure approximately bounds the probability of false positives in the 
model, while maintaining sensitivity to detect large effects (Nikooienejad, Wang, and Johnson 
2016). For brevity, we skip the technical details of the algorithm and refer the readers to Shin, 
Bhattacharya, and Johnson (2018); Mallick et al. (2021) and references therein. We use the R 
package BayesRecipe (Mallick et al. 2021) to carry out these calculations. With this estimation 
strategy, k is estimated prior to posterior sampling, as opposed to empirical Bayes or hyperprior- 
based estimation, making this step identical for both BRL and XBRL (Mallick et al. 2021).

2.6. Implementation

We have implemented the XBRL algorithm as part of the R package BayesRecipe (Mallick et al. 
2021). BayesRecipe is open source and publicly available with source code, documentation, and 
tutorial data for end users at: https://github.com/himelmallick/BayesRecipe.

3. Numerical Studies

3.1. Simulation Studies

To assess the performance of our new algorithm (XBRL), we compare our approach with published 
BRL methods with respect to both computing time and performance. To verify that different BRL 
samplers are comparable with respect to prediction accuracy, we report the average mean squared 
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error (MSE) of the associated posterior point estimates. For both BRL and XBRL, we run the corre-
sponding sampler for 11, 000 iterations, discarding the first 1, 000 as burn-in and estimate k by the 
Apriori Estimation method described in Section 2.5 (Mallick et al. 2021). This choice of tuning 
parameters appears to work satisfactorily based on the convergence diagnostics. We use the posterior 
mean as our point estimator. Results are summarized over 100 simulation runs. We simulate data 
from the true model y à Xb0 á ✏, ✏ ⇠ NÖ0, r2InÜ, and consider both n  p and n> p settings as 
well as a range of sparse and dense models with diverse effect sizes (Table 1). The design matrix X is 
generated from the multivariate normal distribution NpÖ0, RÜ, where R has AR(1) (Autoregressive 
correlated design, where Rij à 0:5ji−jj for all 1  i  j  p) covariance structure. For each parameter 
combination, we generate 100 datasets and each synthetic dataset is further partitioned into a training 
set and a test set.

3.1.1. Results
The results in Table 2 reveal that XBRL has a substantially better average MSE in all simulation set-
tings. It is to be noted that the posterior sampling of BRL relies on sampling from a truncated multi-
variate normal distribution whereas no such step is required for XBRL. When the design matrix is 
highly collinear, the inefficiency of sampling from a constrained multivariate normal distribution is 
known to be severe (Polson, Scott, and Windle 2014; Rossell and Telesca 2017). The efficiency of 
XBRL thus can be attributed to the fact that, unlike BRL, it avoids sampling from a truncated multi-
variable normal distribution and bypasses the use of auxiliary variables. This is particularly eminent 
from the posterior histograms in the prostate cancer data (Section Results), where the bimodality of 
posterior marginals is not captured by BRL although it was captured well by XBRL.

The efficiency of a simpler and faster algorithm for the same Bayesian method has been 
reported previously in the literature. For example, Johndrow, Orenstein, and Bhattacharya (2020) 
recently proposed scalable approximate MCMC algorithms for the Horseshoe Prior and showed 
that the new algorithm yields estimates with lower mean squared error, intervals with better 
coverage, and elucidates features of the posterior that was often missed by previous algorithms in 
high dimensions, including the bimodality of posterior marginals indicating uncertainty about 
which covariates belong in the model. A similar conclusion was found by Mallick and Yi (2014), 
Mallick and Yi (2018), Polson, Scott, and Windle (2014), and Bon (2019), among others.

In light of this, we conclude that although both BRL and XBRL have good mixing in general, 
XBRL leads to faster sampling and better prediction accuracy due to the simplicity of the slice 
sampling algorithm. In terms of computing time, XBRL is significantly faster and less memory- 
intensive than BRL, further confirming the clear and significant benefits of XBRL over BRL in 
the context of both sparse and dense problems with important practical implications.

3.2. Real data applications

3.2.1. Datasets
To illustrate parameter estimation in a real data application, we pay a revisit to the prostate 
cancer (PC) dataset (Stamey et al. 1989). This dataset has been analyzed by many authors 

Table 1. Benchmarking configurations for the simulation study.

Model b0 Ön, pÜ
Fairly Sparse tibsA: Ö3, 0, 0, 1:5, 0, 0, 2, 0, 0ÜT (100, 20), (200, 20), (500, 20),

(50, 50), (20, 50), (50, 100)
Highly Dense tibsB: Ö0:85, :::, 0:85ÜT (100, 20), (200, 20), (500, 20),

(50, 50), (20, 50), (50, 100)
Highly Sparse tibsC: Ö5, 0, :::, 0ÜT (100, 20), (200, 20), (500, 20),

(50, 50), (20, 50), (50, 100)
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including Tibshirani (1996), Park and Casella (2008), Zou and Hastie (2005), Li and Lin (2010), 
and Kyung et al. (2010), and is available from the R package ElemStatLearn. Briefly, it con-
tains nà 97 prostate-specific antigen (PSA) measurements from prostate cancer patients who 
were about to receive radical prostatectomy. PSA is a protein that is produced by the prostate 
gland, with a higher level indicating a greater chance of having prostate cancer. The goal is to 
predict the log of PSA (lpsa) from a number of clinical measurements (pà 8) including (i) log 

Table 2. Simulation results for tibsA, tibsB, and tibsC. The boldface indicates the best performance.

n p b0 Method Mean of SD of Time
MSE MSE (in minutes)

100 10 tibsA XBRL 86.8512 8.2525 0.01574
BRL 89.0356 8.9841 0.31522

tibsB XBRL 85.9272 8.3611 0.01653
BRL 89.39 9.1909 0.28122

tibsC XBRL 86.8986 8.3278 0.0161
BRL 88.3155 8.8503 0.2812

100 20 tibsA XBRL 97.6608 11.1864 0.02884
BRL 99.8023 12.6965 0.50606

tibsB XBRL 98.1799 11.5668 0.0283
BRL 101.7056 12.9992 0.51134

tibsC XBRL 98.4052 11.1722 0.02886
BRL 98.3858 12.5697 0.49999

200 20 tibsA XBRL 87.7459 8.6053 0.02853
BRL 88.6962 8.9393 0.50058

tibsB XBRL 87.4255 8.7853 0.0282
BRL 89.4659 9.1265 0.48854

tibsC XBRL 88.0418 8.677 0.02801
BRL 88.18 8.9148 0.48418

500 20 tibsA XBRL 81.8023 8.5937 0.02829
BRL 81.9671 8.7003 0.49178

tibsB XBRL 81.2682 8.676 0.02812
BRL 82.1677 8.7202 0.48848

tibsC XBRL 81.7219 8.6714 0.02816
BRL 81.855 8.7395 0.4914

50 50 tibsA XBRL 214.5135 40.4324 0.06122
BRL 324.4722 214.8135 0.88149

tibsB XBRL 238.9341 47.0732 0.06153
BRL 379.7010 259.9224 0.88426

tibsC XBRL 214.4992 39.9290 0.05488
BRL 260.0297 188.9276 0.76474

20 50 tibsA XBRL 128.7433 16.6998 0.09365
BRL 221.126 97.5224 1.11219

tibsB XBRL 147.3917 20.3451 0.10036
BRL 212.1596 71.5677 1.46137

tibsC XBRL 134.8029 17.4516 0.10159
BRL 204.5799 86.1511 1.40746

50 100 tibsA XBRL 152.7628 21.4779 0.12329
BRL 213.9409 74.4236 1.68540

tibsB XBRL 185.3526 29.7679 0.19823
BRL 256.5213 41.5307 2.64111

tibsC XBRL 157.0475 21.1609 0.16525
BRL 185.2690 54.2456 2.29940

Table 3. Predictive measures based on repeated holdout evaluation. The boldface indicates the best performance.

Dataset Method Mean of MSE SD of MSE Time (in minutes)

PC XBRL 0.4892 0.763 0.003
BRL 0.5037 0.803 0.058

BH XBRL 26.6556 87.776 0.003
BRL 26.0417 83.347 0.081

CC XBRL 1.0673 1.730 1.031
BRL 1.4685 2.070 37.587
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Table 4. Gelman-Rubin and Geweke diagnostics for the PC data. The point estimates of the Gelman-Rubin potential scale 
reduction factor (labelled Point est.) and their upper confidence limits (labelled Upper CI) are reported.  Approximate conver-
gence is diagnosed when the upper limit is close to 1. The occurrence of the Geweke scores well within 2 standard deviations 
of zero gives does not indicate lack of convergence, while deviations exceeding 2 standard deviations suggests that additional 
samples are required to achieve convergence.

Gelman-Rubin

BRL XBRL Geweke

Feature Point Est. Upper CI Point Est. Upper CI BRL XBRL

lcavol 1 1 1 1 −2.3523 1.2930
lweight 1 1 1 1 −0.8037 0.3674
age 1 1 1 1 2.1168 −0.3190
lbph 1 1 1 1 −2.5680 −0.7100
svi 1 1 1 1 −2.4449 −0.5527
lcp 1 1 1 1 2.3642 −0.9140
gleason 1 1 1 1 2.2179 1.2642
pgg45 1 1 1 1 −2.2471 −0.9587

Table 5. Gelman-Rubin and Geweke diagnostics for the BH data. The point estimates of the Gelman-Rubin potential scale 
reduction factor (labelled Point est.) and their upper confidence limits (labelled Upper CI) are reported.  Approximate conver-
gence is diagnosed when the upper limit is close to 1. The occurrence of the Geweke scores well within 2 standard deviations 
of zero gives does not indicate lack of convergence, while deviations exceeding 2 standard deviations suggests that additional 
samples are required to achieve convergence.

Gelman-Rubin

BRL XBRL Geweke

Feature Point Est. Upper CI Point Est. Upper CI BRL XBRL

crim 1 1 1 1.00 −0.2862 0.9295
zn 1 1 1 1.00 0.2861 −0.2214
indus 1 1 1 1.00 0.1271 0.6763
chas 1 1 1 1.00 0.2782 −1.3072
nox 1 1 1 1.00 −0.2746 −1.2312
rm 1 1 1 1.01 −0.2960 0.7738
age 1 1 1 1.00 −0.2880 −0.4071
dis 1 1 1 1.00 −0.2841 −0.9864
rad 1 1 1 1.01 0.2812 −0.1377
tax 1 1 1 1.00 −0.2761 0.3696
ptratio 1 1 1 1.00 −0.2718 −1.6289
b 1 1 1 1.00 0.2890 −0.2061
lstat 1 1 1 1.01 −0.0851 0.3243

Table 6. Gelman-Rubin and Geweke diagnostics for the CC data (top 10 predictors based on posterior median). The point esti-
mates of the Gelman-Rubin potential scale reduction factor (labelled Point est.) and their upper confidence limits (labelled 
Upper CI) are reported.  Approximate convergence is diagnosed when the upper limit is close to 1. The occurrence of the 
Geweke scores well within 2 standard deviations of zero gives does not indicate lack of convergence, while deviations exceed-
ing 2 standard deviations suggests that additional samples are required to achieve convergence.

Gelman-Rubin

BRL XBRL Geweke

Feature Point Est. Upper CI Point Est. Upper CI BRL XBRL

X227058_at 1 1 1 1 −0.3489 1.3572
X217428_s_at 1 1 1 1 −1.8786 0.5877
X225803_at 1 1 1 1 1.8443 −0.5218
X200906_s_at 1 1 1 1 1.8233 −0.6768
X206026_s_at 1 1 1 1 0.4998 −1.4483
X211924_s_at 1 1 1 1 0.3627 0.3720
X227140_at 1 1 1 1 −0.2438 1.1590
X209101_at 1 1 1 1 −1.8731 0.6881
X202627_s_at 1 1 1 1 −2.1534 0.9113
X223392_s_at 1 1 1 1 1.2453 1.7800
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Figure 2. Trace plots using BRL method for PC data.

Figure 3. Trace plots using XBRL method for PC data.

Figure 4. Trace plots using BRL method for BH data.
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cancer volume (lcavol), (ii) log prostate weight (lweight), (iii) clinical age of the patient (age), 
(iv) log of benign prostatic hyperplasia amount (lbph), (v) seminal vesicle invasion (svi), (vi) 
log of capsular penetration (lcp), (vii) Gleason score (gleason), and (viii) percent of Gleason 
scores 4 or 5 (pgg45).

We also assess predictive performance in a high-dimensional gene expression data related 
to the gene TGFB, which encodes a secreted ligand of the Transforming growth factor beta 
(TGFB) superfamily of proteins that control proliferation, differentiation, and other func-
tions in many cell types (Calon et al. 2012). Recently, Calon et al. (2012) used mice experi-
ments to identify pà 172 TGFB-related genes potentially related to colon cancer progression 
and further validated these genes in an independent data set with nà 262 human patients. 
The response variable of interest is the overall TGFB level (average log-transformed expres-
sion of TGFB1, TGFB2 and TGFB3 mRNAs) in a given sample (a surrogate for colon cancer 
progression), which we want to predict based on the gene expression of other TGFB-related 

Figure 5. Trace plots using XBRL method for BH data.

Figure 6. Trace plots using BRL method for CC data (top 10 predictors based on posterior median).
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Figure 7. Trace plots using XBRL method for CC data (top 10 predictors based on posterior median).

Figure 8. Histograms using BRL method for PC data.

Figure 9. Histograms using XBRL method for PC data.
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Figure 10. Histograms using BRL method for BH data.

Figure 11. Histograms using XBRL method for BH data.

Figure 12. Histograms using BRL method for CC data (top 10 predictors based on posterior median).
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genes (pà 172). We refer to this dataset as CC, which is available from Rossell and Telesca 
(2017).

We additionally consider the benchmark Boston housing (BH) dataset available from the R 
package mlbench, thus showcasing the applicability of our method in both small and large 
datasets.

3.2.2. Results
It is highly satisfactory to observe that the proposed XBRL method exhibits competitive perform-
ance on these datasets, especially with respect to better or comparable prediction accuracy than 

Figure 13. Histograms using XBRL method for CC data (top 10 predictors based on posterior median).

Figure 14. Credible interval plots for PC data.
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BRL, while remaining up to 20 times faster than published methods (Table 3). Overall, these find-
ings suggest that the proposed XBRL method is a useful alternative to existing Bayesian nonlocal 
regularization methods with computational demands that are competitive with the current fastest 

Figure 15. Credible interval plots for BH data.

Figure 16. Credible interval plots for CC data (top 10 predictors based on posterior median).
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alternatives. Gelman-Rubin and Geweke diagnostics for all three datasets are represented in 
Tables 4–6 along with trace plots (Figures 2–7) and histograms (Figures 8–13), confirming good 
mixing for both BRL and XBRL. They also reveal that BRL and XBRL can differ in detecting the 
bimodality of posterior marginals and in indicating uncertainty about which covariates belong in 
the model. In terms of feature selection based on 95% credible intervals (Figures 14–16), there is 
a general consensus on most features across datasets. However, occasional disagreements do arise. 
This does not imply that one conclusion is definitively correct and the other is unequivocally 
wrong in a specific setting. Rather, it highlights the substantial divergence between these two con-
clusions and underscores the value for practitioners in having both options available, which we 
have provided as part of our open-source implementation freely available at: https://github.com/ 
himelmallick/BayesRecipe.

4. Conclusions

We have proposed an accelerated Bayesian reciprocal LASSO (XBRL) method for simultaneous 
coefficient estimation and variable selection in linear regression. Our approach is based on the 
observation that the reciprocal LASSO estimate can be interpreted as a Bayesian posterior mode 
estimate when the regression parameters are assigned independent inverse Laplace priors. On 
simulated and real data, we have demonstrated that XBRL is amenable to faster posterior estima-
tion while performing as well as or better than custom BRL implementations that rely on auxil-
iary latent variables. Computationally efficient extension of this approach to other models, such 
as GLMs, survival, count, and zero-inflated regression models, may yield further advantages, 
potentially leading to a multi-model framework for accelerated reciprocal regularization under a 
single estimation umbrella.
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