
STOCHASTIC TREE ENSEMBLES

FOR REGULARIZED NONLINEAR REGRESSION

By Jingyu He and P. Richard Hahn

The University of Chicago

Arizona State University

February 8, 2020

This paper develops a novel stochastic tree ensemble method for

nonlinear regression, which we refer to as XBART, short for Acceler-

ated Bayesian Additive Regression Trees. By combining regulariza-

tion and stochastic search strategies from Bayesian modeling with

computationally efficient techniques from recursive partitioning ap-

proaches, the new method attains state-of-the-art performance: in

many settings it is both faster and more accurate than the widely-

used XGBoost algorithm. Via careful simulation studies, we demon-

strate that our new approach provides accurate point-wise estimates

of the mean function and does so faster than popular alternatives,

such as BART, XGBoost and neural networks (using Keras). We also

prove a number of basic theoretical results about the new algorithm,

including consistency of the single tree version of the model and sta-

tionarity of the Markov chain produced by the ensemble version. Fur-

thermore, we demonstrate that initializing standard Bayesian addi-

tive regression trees Markov chain Monte Carlo (MCMC) at XBART-

fitted trees considerably improves credible interval coverage and re-

duces total run-time.

Keywords and phrases: Tree ensembles; Machine learning; Markov chain Monte Carlo; Regression trees; Supervised

learning; Bayesian

1
imsart-aos ver. 2014/10/16 file: scalabletrees.tex date: February 8, 2020

CONTENTS

1 Introduction . 3

2 XBART Framework . 4

2.1 Fitting a single tree recursively and stochastically . 4

2.2 Forest . 7

2.3 Warm-start BART MCMC . 11

2.4 Adaptive variable importance weights . 11

2.5 Computational strategies . 12

2.5.1 Pre-sorting predictor variables . 12

2.5.2 Adaptive cutpoint grid . 13

2.5.3 Variable importance weights . 13

3 Tree-based models for nonlinear regression . 14

3.1 Model implied by the GrowFromRoot algorithm . 16

4 Theory of Consistency . 18

5 Simulation Studies . 24

5.1 Time-accuracy comparisons to other popular machine learning methods 24

5.1.1 Synthetic regression data . 25

5.1.2 Results . 26

5.2 Warm-start BART MCMC . 26

6 Discussion . 29

References . 29

A Categorical covariates . 33

B Proof of Lemma 2 . 34

C Proof of Lemma 3 . 35

C.1 Proof of Lemma 3 for the case k = 1 . 35

C.2 Proof of Lemma 3 for the case k = 2 . 45

2

1. Introduction. Tree-based algorithms for supervised learning, such as Classification and

Regression Trees (CART) (Breiman et al., 1984), random forests (Breiman, 1996, 2001), adaBoost

(Freund and Schapire, 1997), and gradient boosting (Breiman, 1997; Friedman, 2001, 2002), are

widely used for applied supervised learning. As a whole, these methods are popular in applied

settings due to their speed and accuracy in mean estimation and out-of-sample prediction tasks.

One limitation of such methods is their well-known sensitivity to tuning parameters, which require

costly cross-validation to optimize. Bayesian additive regression trees (BART) (Chipman et al.,

2007, 2010) is a popular model-based alternative that is often more accurate than other tree-

based methods; specifically, BART boasts valuable robustness to the choice of tuning-parameters.

However, relative to random forests and boosting, BART’s wider adoption has been slowed by its

more severe computational demands, owing to its reliance on a random walk Metropolis-Hastings

Markov chain Monte Carlo (MCMC) algorithm.

Despite this limitation, BART has inspired a considerable body of research in recent years.

Applications to causal inference (Hill, 2011; Hahn et al., 2020; Logan et al., 2019; Starling et al.,

2019), extensions to novel model settings (Murray, 2017; Linero and Yang, 2018; Linero et al.,

2019; Kindo et al., 2016; Pratola et al., 2017; Starling et al., 2018; van der Pas and Ročková, 2017),

computational innovations (Pratola et al., 2014; Pratola, 2016), and posterior consistency theory

(Ročková and Saha, 2019; Rocková, 2019) are some of the notable active research areas. For a

more comprehensive review of this literature, see Linero (2017) and Hill et al. (2020). Important

precursors of the BART model include Chipman et al. (1998), Denison et al. (1998), and Gramacy

and Lee (2008).

In this paper, we contribute to this growing literature by developing a novel stochastic tree

ensemble method that combines the hyper-parameter robustness of BART with the efficient recur-

sive computational techniques of traditional tree-based methods. Specifically, we propose a novel

tree splitting criterion derived from an integrated-likelihood calculation and suggest a parameter-

sampling approach (as opposed to a bootstrapping approach, as in random forests) for avoiding

over-fitting. These modifications lead to a tree sampling algorithm that is substantially faster than

BART while retaining its state-of-the-art predictive accuracy. This new approach to Bayesian tree

models both leads to a substantial speed-up of model fitting and also opens the door for new

theoretical results adapted from the literature on random forests (Scornet et al., 2015).

After introducing the general algorithm, which we call Accelerated Bayesian Additive Regression

3

Trees (XBART), we then specialize it to Gaussian nonlinear regression. We prove that the sampling

algorithm produces a finite-space Markov chain with stationary distribution, and show that the

recent theoretical results of consistency for random forests (Scornet et al., 2015) can be modified to

apply to XBART. A wide range of simulation studies demonstrate the efficacy of the new approach.

Furthermore, XBART works not only as a stand-alone machine learning algorithm, but can also be

used to initialize a BART MCMC sampler (warm-start BART), resulting in faster fully Bayesian

inference with improved posterior exploration as indicated by posterior credible intervals (for the

mean function) with better coverage (for a fixed number of posterior samples).

2. XBART Framework. Let y denote a continuous outcome in R1. Our goal is to predict y

by a length p covariate vector x = (x(1), · · · ,x(p)). We demonstrate the general framework of the

algorithm in this section; details of the regression setting are introduced in the following section.

We begin with the algorithm for fitting a single tree, then proceed to tree ensembles, or forests.

2.1. Fitting a single tree recursively and stochastically. A tree Tl (1 ≤ l ≤ L) is a set of decision

rules defining a rectangular partition of the covariate space {Al1, · · · ,AlBl}. Each terminal node

Alb is associated with a vector of leaf parameter µlb. We denote a tree g(x;Tl, µl) where µl =

(µl1, · · · , µlBl) is a vector of all leaf parameters. Each pair of (Tl, µl) parameterizes a step function

on covariate space,

g(x;Tl, µl) = µlb, if x ∈ Alb.

Figure 1 depicts a regression tree. The left panel shows a decision rule structure, and the right

panel plots the corresponding partition of the space as well as the associated leaf parameters.

Ideally, a tree partitions the space into fine irregular mesh where outcome observations within each

leaf node (defining a hyperrectangle in covariate space) are nearly homogeneous. Predicting the

outcome of a new observation then follows according to the leaf parameter associated with the

node it falls within.

Usually, a tree algorithm learns the partition by recursively partitioning the data set one x

variable at a time, and partitions the child nodes similarly as parent node until reaching terminating

conditions. Algorithm 1 gives the pseudocode for the essential step of fitting a tree recursively.

Most popular tree-based methods deploy Algorithm 1 varying in terms of their split criteria and

stopping conditions. Essentially, split criteria are functions of a cutpoint, measuring homogeneity

within the two child nodes produced by the implied split. CART (Breiman et al., 1984), for instance,

4

x1 < 0.8

µl1 x2 < 0.4

µl2 µl3

no yes

no yes

0.4

0.8
x1

x2 µl1

µl2

µl3

Fig 1: An illustration of tree in two dimensional space.

Algorithm 1 Pseudocode of growing a tree recursively.

1: Start at a root node.
2: Select a cutpoint by some pre-specified split criterion, then partition the root node into two child nodes according

to the selected decision rule.
3: If pre-specified stop conditions are satisfied, stop the algorithm and estimate leaf parameters based on data in

each leaf node. Otherwise, apply step 2 to each child node.

uses mean squared error to define its split criterion. Note also that CART and other recursive tree

algorithms optimize their split criteria over the set of all cutpoint candidates in order to select a

cutpoint. Frequently used stop conditions include maximum depth of a tree, minimal number of

data observations within leaf node or a threshold for percent change of split criterion from parent

to child nodes. Despite its simplicity and elegance, the exhaustive search approach tends to grow a

tree unnecessarily deep, thereby over-fitting the data, thus pruning (the merge of some leaf nodes

via a bottom up process) after model fitting is usual necessary to further throttle model complexity.

In contast, BART provides a Bayesian perspective on tree models by using a regularization prior on

tree space which preferences smaller trees. The excellent empirical performance of BART suggests

that this prior regularization is beneficial. However, BART does not fit trees recursively but rather

explores the posterior distribution over trees via a Bayesian backfitting MCMC scheme, which

is computationally intensive, especially for large scale data. This computational burden hampers

BART’s usefulness on large scale data.

Inspired by both CART and BART, our proposed XBART framework combines strength from

each. XBART is a sum of trees in which each individual tree is grown according to a model-

based split criterion derived from an integrated-likelihood, but draws a cutpoint with probability

proportional to split criterion. Furthermore, XBART stochastically terminates the growing process,

the so-called no-split option; this allows trees to stop growing before reaching stop conditions and

helps to prevent over-fitting.

5

We briefly clarify notation before turning to details of the algorithm. The predictor matrix X,

with dimension n × p, defines a set of splitting rule candidates, denoted C, which are indexed

as (j, k) where j = 1, . . . p indexes a variable (column) of X and k indexes a set of candidate

cutpoints. Let |C| denote the total number of candidate splitting rules (cutpoints). Let Φ denote

prior hyper-parameters and Ψ denote model parameters, which are both considered given and fixed

when growing a single tree (a distinction that will be clarified in specific examples).

Inspired by the Bayesian approach, we define a likelihood L(yb;µb,Ψb) on one leaf node b with

leaf-specific parameter µb and other model parameters Φb (given and fixed during the tree growing

process). In the following text, we omit subscript b for simplicity. For instance, the likelihood can

be Gaussian for regression, details of which are given in section 3. The leaf parameter µ is given a

prior π(µ | Φ). We derive our split criterion by integrating out the leaf parameter µ:

m(s | Φ,Ψ) :=

∫
L(y;µ,Ψ)π(µ | Φ)dµ,

where s represents sufficient statistics of data y falling in the current node.

A cutpoint (j, k) partitions the current node to left and right child nodes, with sufficient statistics

sljk and srjk calculated based on y respectively. Assuming that observations in separate leaf nodes

are independent, the joint integrated-likelihood is simply the product of the two sides

(1) m(sljk | Φ,Ψ)m(srjk | Φ,Ψ),

which defines the split criterion for cutpoint (j, k). Furthermore, the split criterion for no-split is

defined as

|C|
(

(1 + d)β

α
− 1

)
m(s∅ | Φ,Ψ)

where d is depth of the current node, s∅ represents sufficient statistics on current node and α, β

are hyper-parameters. The weight of no-split increases significantly as a tree grows deeper, strongly

penalizing deep trees and thereby favoring “weak learners” in the parlance of the boosting literature.

Besides the no-split option, traditional stopping conditions are also imposed, such as setting a

maximum depth or a minimal number of observations per node.

Once the split criterion has been evaluated at all cutpoint candidates, as well as the no-split option

(retained from the previous split), a cutpoint is randomly sampled with probability proportional

to its split criterion value. Unlike non-model-based tree algorithms, XBART’s split criterion has a

natural probabilistic interpretation as it is derived as an integrated-likelihood and sampling follows

6

according to Bayes rule. Indeed, the prior probability of the no-split option (after normalizing with

respect to all other cutpoint candidates) matches that of the tree prior used in standard BART

(Chipman et al., 2010).

Theorem 1. The a priori probability of splitting at a node of depth d implied by algorithm 2

(grow-from-root) is α(1 + d)−β.

Proof. The proof is by direct calculation. Ignore the data contribution from the marginal

likelihood function m(·) by setting these terms to 1 in the expressions in line 8. Accordingly,

the probability of any cutpoint (j, k) ∈ C has prior probability proportional to 1 and the prior

probability of no-split is proportional to |C|
(

(1+d)β

α − 1
)

. Therefore, the total weight given to

splitting is
∑
C 1 = |C| and normalizing gives the prior probability of splitting as

split weight

split weight + no split weight
=

|C|

|C|
(

(1+d)β

α − 1
)

+ |C|
= α(1 + d)−β.

Remark We observe that sampling a cutpoint stochastically rather than optimizing the split cri-

terion substantially improves performance, based on simulation experiments. Intuitively, sampling

cutpoints rather than optimizing them helps alleviate over-fitting and encourages wider exploration

of the tree space.

Once the no-split option is selected or stopping conditions are met, the current node becomes a

terminating node or a leaf. The leaf parameter µlb is then updated based on data in the current

leaf by standard Bayesian posterior sampling using conjugate likelihood and prior. Algorithm 2

presents the GrowFromRoot function that grows a single tree for XBART.

In summary, XBART implies the same prior probability as BART by the design of the split

criterion, while fitting a tree recursively. This framework enjoys great flexibility of potential appli-

cations. In this paper we focus on the case where the marginal likelihood arises from a Gaussian

mean regression model (section 3), but it is straightforward to substitute an integrated-likelihood

function m(s | Φ,Ψ) from other models.

2.2. Forest. A forest, as the name sugggests, is an ensemble of trees. Ensemble learning is a

widely used technique to combine multiple learning algorithms to improve the overall prediction ac-

curacy. Random forests (Breiman, 1996, 2001) takes an average of trees fitting bootstrap resampled

7

Algorithm 2 GrowFromRoot

1: procedure GFR(y,X,Ψ,Φ, d, T , node)
2: outcome Modifies T by adding nodes and sampling associated leaf parameters.
3: s∅ ← s(y,X,Ψ, C, all). . Compute sufficient statistic of not splitting.
4: for (j, k) ∈ C do . Calculated recursively in a single sweep of the data per variable.
5: sljk ← s(y,X,Ψ, C, j, k, left). . Compute sufficient statistic of left candidate node.
6: srjk ← s(y,X,Ψ, C, j, k, right). . Compute sufficient statistic of right candidate node.
7: end for
8: Sample cutpoint (j, k) proportional to integrated likelihoods

m(sljk)m(srjk)

or

|C|
(

(1 + d)β

α
− 1

)
m(s∅)

for the no-split option.
9: if no-split is selected or stop conditions are reached then

10: θnode ← SampleParameters(s∅)
11: return.
12: else
13: Create two new nodes, denoted left node and right node, and growing T by designating them

as the current node’s (node) children.
14: Sift the data into left and right parts, according to the selected cutpoint xij′ ≤ x∗kj and xij′ > x∗kj ,

respectively, where x∗kj is the value corresponding to the sampled cutpoint (j, k).
15: GFR(yleft,Xleft,Ψ,Φ, d+ 1, T , left node)
16: GFR(yright,Xright,Ψ,Φ, d+ 1,T , right node)

17: end if
18: end procedure

data; adaBoost (Freund and Schapire, 1997), gradient boosting (Breiman, 1997; Friedman, 2001,

2002) and BART (Chipman et al., 2010) explicitly fit a sum of trees. XBART Gaussian nonlinear

regression takes the same sum of trees form as BART does:

(2) f(x) =
L∑
i=1

gl(x;Tl, µl),

where step function gl(x;Tl, µl) denotes a tree defined by partition Tl and corresponding leaf pa-

rameters µl.

The stochastic tree ensemble method proceeds similarly to an MCMC algorithm. Suppose we

draw I samples (sweeps) of forests, and each forest contains L trees. When updating the h-th tree

in the iter-th iteration, a new tree is grown to fit the partial residuals r
(iter)
h , which are defined as

the partial residual of the target (y) after subtracting off the contribution of all the other trees.

Specifically, the partial residuals are defined as

r
(iter+1)
h ≡ y −

∑
h′<h

g(X;Th′ , µh′)
(iter+1) −

∑
h′>h

g(X;Th′ , µh′)
(iter),

8

while the total residual is taken with respect to all trees

r̃
(iter+1)
h ≡ r

(iter+1)
h − g(X;Th, µh)(iter+1).

Algorithm 3 draws I samples of the forest; we refer to one pass of the algorithm, sampling each

tree, as a sweep. Every tree is updated by algorithm 2 GrowFromRoot in each iteration, where the

“data” are the partial residuals as calculated at the current iteration. Extra model-dependent non-

tree parameters Ψ are updated in between sampling each tree; specifically, the residual standard

deviation σ is sampled after each tree. Details are summarized in the following sections.

Algorithm 3 Accelerated Bayesian Additive Regression Trees (XBART)

1: procedure XBART(y,X,Φ, L, I)
2: output I posterior draws of a forest (and associated leaf parameters) comprising L trees.
3: Initialize Ψ, partial fit Riterh .
4: for iter in 1 to I do
5: for h in 1 to L do
6: Create new node.
7: Initialize tree T iterh consisting only of new node.
8: GFR(riterh , X,Ψ,Φ, T iterh , d = 0, new node)

9: Update riterh+1 (or riter+1
1 if h = L), the target to fit for the next tree and full residual r̃

(iter+1)
h .

10: Sample non-tree parameters of Ψ, probably based on the full residual r̃
(iter+1)
h .

11: end for
12: end for
13: end procedure

Next, we study theoretical properties of Algorithm 3.

Theorem 2. The algorithm sampling F = {Th}1≤h≤L is a finite-state Markov chain with sta-

tionary distribution.

Proof. We consider the process F = {Th}1≤h≤L. Leaf parameters µ = {µh}1≤h≤L are updated

conditional on forest F based on standard conjugate Bayesian posterior draws and are not to be

regarded as part of the Markov chain of the forest.

First, observe that each tree has a maximum depth and all cutpoint candidates are defined on a

finite covariate matrix X. Therefore a single tree has finite states. The forest is an ensemble of a finite

number of trees, thus has a finite number of states as well. The probability of the GrowFromRoot

algorithm drawing a single tree is a product of the probabilities of drawing specific cutpoints at each

node, thus p(Tj | T−j , µ−j) > 0. In addition, the GrowFromRoot algorithm updates T iterh fitting

riterh , which is defined by trees and leaf parameters with subscript 1 < j < h in iter-th sweeps and

h+ 1 < j < L in (iter − 1)-th sweeps. Therefore, the forest process is a finite-state Markov chain.

9

Second, we claim that because the split criterion is defined by an integrated likelihood, it has

non-zero evaluations for all cutpoint candidates (including the no-split option) given fitting data

riterh . Let T−j = {Th}1≤h≤L/Tj and µ−j = {µh}1≤h≤L/µj be trees and leaf parameters excepting

the j-th one, respectively. We have

(3) p(Tj | T−j) =

∫ ∫
p(Tj | y, T−j , µ−j ,Ψ)f(µ−j | y, T−j)f(Ψ)dΨdµ−j > 0,

since f(µ−j | y, T−j), the usual Bayesian posterior of drawing leaf parameters, is non-zero. Note

that this integral arises via the algorithmic implementation that draws Tj by first drawing µ−j and

Ψ, and then drawing Tj via GrowFromRoot.

Lastly, consider the transition probability between any two forests, F 1 = {T 1
h}1≤h≤L and F 2 =

{T 2
h}1≤h≤L. Observe that there is at least one way to transition from one forest to another, which

is to regrow each tree and replace them one by one. Therefore, we have

P (F2 | F1) ≥
L∏
j=1

p
(
T 2
j | {T 2

h}1≤h<j , {T 1
h}j+1≤h<L

)
> 0,

where the last inequality is from equation (3).

In conclusion, the forest process has a finite number of possible states, and the transition proba-

bility between any two states is positive. Therefore, by standard results, it is a finite-state Markov

chain with a stationary distribution.

To obtain a prediction from XBART, we take posterior averages as if the sampled trees were

draws from a standard Bayesian Monte Carlo algorithm. That is, given I iterations of the algorithm,

the final I− I0 samples are used to compute a point-wise average function evaluation, where I0 < I

denotes the length of the burn-in period. We recommend I = 40 and I0 = 15 for routine use. The

final estimator is therefore expressible as

f̄(X) =
1

I − I0

I∑
k>I0

f (k)(X).

where f (k) denotes a sample of the forest, as in equation 2, drawn by algorithm 3. This would

correspond to the Bayes optimal estimator under mean squared error estimation loss, if we regard

our samples as coming from a proper posterior distribution. As the GrowFromRoot strategy is

not a proper full conditional, this estimator must be considered an approximation of some sort.

Nonetheless, simulation results strongly suggest that the approximation is adequate. In subsequent

10

sections we also provide some theory suggesting that XBART is a consistent estimator in its own

right.

As for quantification of estimation uncertainty, note that with only I = 40 sweeps, the XBART

posterior would certainly understate the estimation uncertainty even if we had independent Monte

Carlo draws from a valid posterior distribution. However, the standard BART MCMC is probably

not mixing well in most contexts, either, and yet still provides useful, if approximate, uncertainty

quantification. It is noteworthy that experiments with a version of an XBART estimate based

on only the final sweep (that is, letting I − I0 = 1) perform worse than XBART with I − I0 >

1, suggesting that the posterior exploration, while partial, is still beneficial. In any event, the

next section describes how to combine XBART with standard BART MCMC to get full Bayesian

inference that appears to be both faster and more accurate than BART MCMC alone.

2.3. Warm-start BART MCMC. Standard BART MCMC (Chipman et al., 2010) initializes

each tree at the root (i.e., a tree only one node) and explores the posterior over trees via a random-

walk Metropolis-Hastings algorithm. This approach works surprisingly well in practice, but it is nat-

ural to wonder if it takes unnecessarily long to find favorable regions in tree space. Because XBART

provides a fast approximation to the BART posterior, initializing BART MCMC at XBART trees

rather than roots is a promising strategy to help speed convergence and also to accelerate posterior

exploration by running multiple chains. In fact, we find that this approach yields improved point

estimation and posterior credible intervals with substantially higher pointwise frequentist coverage

of the mean function, and in a fraction of the total run time. These simulation results are reported

in section 5.2.

2.4. Adaptive variable importance weights. Our XBART implementation strikes an intermediate

balance between the local BART updates, which randomly consider one variable at a time, and the

all-variables Bayes rule described above. Specifically, we consider only m ≤ V variables at a time

when sampling each splitting rule. Rather than drawing these variables uniformly at random as

is done in random forests, we introduce a parameter vector w which denotes the prior probability

that a given variable is chosen to be split on, as suggested in Linero (2018). Before sampling each

splitting rule, we randomly select m variables (without replacement) with probability proportional

to w.

11

2.5. Computational strategies. In the remainder of this section, we catalogue implementation

details that improve the computational efficiency of the algorithm. These implementational de-

tails serve to make the algorithm competitive with state-of-the-art supervised learning algorithms,

such as XGBoost. These particular strategies, such as variable presorting and careful handling of

categorical covariates, are inapplicable in the standard BART MCMC and XBART’s ability to

incorporate them is the basis of its improved performance.

2.5.1. Pre-sorting predictor variables. Observe that the XBART split criterion depends on suf-

ficient statistics only, namely the sum of the observations in a node (that is, at a given level of

the recursion). An important implication of this, for computation, is that with sorted predictor

variables, the various cutpoint integrated likelihoods can be computed rapidly via a single sweep

through the data (per variable), taking cumulative sums. Let O denote the V -by-n array such that

ovh denotes the index, in the data, of the observation with the h-th smallest value of the v-th

predictor variable xv. Then, taking the cumulative sums gives

s(≤, v, c) =
∑
h≤c

rovh

and

s(>, v, c) =

n∑
h=1

rlh − s(≤, v, c).

The subscript l on the residual indicates that these evaluations pertain to the update of the lth

tree.

The above formulation is useful if the data can be presorted and, furthermore, the sorting can be

maintained at all levels of the recursive tree-growing process. To achieve this, we must “sift” each

of the variables before passing to the next level of the recursion. Specifically, we form two new index

matrices O≤ and O> that partition the data according to the selected cutpoint. For the selected

split variable v and selected split c, this is automatic: O≤v = Ov,1:c and O>v = Ov,(c+1):n. For the

other V − 1 variables, we sift them by looping through all n available observations, populating O≤q

and O>q , for q 6= v, sequentially, with values oqj according to whether xvoqj ≤ c or xvoqj > c, for

j = 1, . . . , n.

Because the data is processed in sorted order, the ordering will be preserved in each of the new

matrices O≤ and O>. This strategy was first presented in Mehta et al. (1996) in the context of

classification algorithms and has be rediscovered a number of times since then. The pre-sorting and

12

sifting O strategy is easy to implement for continuous covariates, but not for categorical covariates

due to the possibility of ties in the data. Appendix A describes a special data structure for dealing

with ties efficiently.

2.5.2. Adaptive cutpoint grid. Evaluating the integrated likelihood criterion is straightforward,

but the summation and normalization required to sample the cutpoints contributes a substantial

computational burden itself. Therefore, it is helpful to consider a restricted number of cutpoints C.

This can be achieved simply by taking every jth value (starting from the smallest) as an eligible

cutpoint with j = bnb−2
C c. As the tree grows deeper, the amount of data that is skipped over

diminishes. Eventually, we get nb < C, and each data point defines a unique cutpoint. In this way,

the data could, without regularization, be fit perfectly, even though the number of cutpoints at any

given level is given an upper limit. As a default, we set the number of cutpoints to min (n, 100),

where n is the sample size of the entire data set.

Our cutpoint subsampling strategy is more straightforward than the elaborate cutpoint subselec-

tion search heuristics used by XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke et al., 2017),

which both consider the gradient evaluated at each cutpoint when determining the next split. Our

approach does not consider the response information at all, but rather defines a predictor-dependent

prior on the response surface. That is, given a design matrix X, sample functions can be drawn

from the prior distribution by sampling trees, splitting uniformly at random among the cutpoints

defined by the node-specific quantiles, in a sequential fashion.

2.5.3. Variable importance weights. The variable weight parameter w is given a Dirichlet prior

with hyper-parameters w̄ that is initialized to all ones. At each iteration of the first sweep through

the forest, w̄ is incremented to count the total number of splits across all trees. The split counts

are then updated in between each tree sampling/growth step:

w̄← w̄ − w̄
(k−1)
l + w̄

(k)
l

where w̄
(k)
l denotes the length-V vector recording the number of splits on each variable in tree l

at iteration k. The weight parameter is then re-sampled as w ∼ Dirichlet(w̄). Splits that improve

the likelihood function will be chosen more often than those that don’t. The parameter w is then

updated to reflect that, making chosen variables more likely to be considered in subsequent sweeps.

In practice, we find it is helpful to use all V variables during an initialization phase, to more rapidly

obtain an accurate initial estimate of w.

13

3. Tree-based models for nonlinear regression. This section provides details of XBART in

the Gaussian nonlinear regression setting. We derive specific split criteria and sampling strategies for

leaf parameters µ and non-tree parameters Ψ. We begin by considering a nonlinear mean regression

additive error model

(4) y = f(x) + ε,

where f is the unknown mean regression function f(x) = E[y | x] and ε ∼ N(0, σ2). The extra

non-tree parameter is residual variance σ2, which is given a standard inverse-Gamma(a, b) prior and

updated in between each tree update. Reviewing notation, x = (x(1), · · · ,x(p)) is a p dimensional

covariate vector and y ∈ R is the real response variable. Capital letters represent a vector or matrix

of data, Y = (y1, · · · , yn) is a vector of n observations and X = (x′1, · · · ,xn)′ is a n × p matrix of

covariate data. Leaf parameters are given independent and identical Gaussian priors, µ ∼ N(0, τ).

In the notation from above, these modeling choices correspond to hyper-parameter and model

parameters Φ = (a, b, τ) and Ψ = (σ), respectively.

Assuming that observations in the same leaf node share a common mean parameter, the prior

predictive distribution — obtained by integrating out the unknown group-specific mean — is simply

a mean-zero multivariate Gaussian distribution with covariance matrix V,

(5) p(Y | τ, σ2) =

∫
N(Y | µ, σ2In)N(µ | 0, τ)dµ = N(0,V),

where N(Y | µ, σ2In) denotes the density of multivariate Gaussian distribution with mean µ and

covariance matrix σ2In, n is number of data observations in the current node. We have

V = τJJt + σ2In, V−1 = σ−2I− τ

σ2(σ2 + τn)
JJt,

where J is a length n column vector of all ones. Observe that the prior predictive density of

Y ∼ N(0,V) is

p(Y | τ, σ2) = (2π)−n/2 det(V)−1/2 exp

(
−1

2
Y tV−1Y

)
,

which can be simplified by a direct application of the matrix inversion lemma to V−1. Applying

Sylvester’s determinant theorem to det V−1 yields

det V−1 = σ−2n

(
1− τn

σ2 + τn

)
= σ−2n

(
σ2

σ2 + τn

)
.

Taking logarithms yields a marginal log-likelihood of

−n
2

log (2π)− n log (σ) +
1

2
log

(
σ2

σ2 + τn

)
− 1

2

Y tY

σ2
+

1

2

τ

σ2(σ2 + τn)
s2,

14

where we write the sufficient statistics s ≡ Y tJ =
∑

i yi so that Y ′JJtY = (
∑

i yi)
2 = s2. This

likelihood is applied separately to two child nodes of a single cutpoint (j, k). Because observations

in different leaf nodes are independent (conditional on σ2), the full marginal log-likelihood is given

by
2∑
b=1

{
−nb

2
log (2π)− nb log (σ) +

1

2
log

(
σ2

σ2 + τnb

)
− 1

2

Y t
b Yb
σ2

+
1

2

τ

σ2(σ2 + τnb)
s2
b

}

=− n

2
log (2π)− n log (σ)− 1

2

Y tY

σ2
+

1

2

2∑
b=1

{
log

(
σ2

σ2 + τnb

)
+

τ

σ2(σ2 + τnb)
s2
b

}
,

where index b runs over two child nodes and
∑2

b=1 nb = n. Notice that the first three terms are not

functions of the partition (the tree parameter), and so may be ignored, leaving

1

2

2∑
b=1

{
log

(
σ2

σ2 + τnb

)
+

τ

σ2(σ2 + τnb)
s2
b

}
as the model-based split criterion, where (nb, sb) are functions of the data. Therefore, we define the

log-integrated-likelihood

(6) log(m(s)) = log

(
σ2

σ2 + τn

)
+

τ

σ2(σ2 + τn)
s2.

The logarithm of split criterion (j, k) is

(7)

log
(
m(sljk)m(srjk)

)
= log

(
σ2

σ2 + τnljk

)
+

τ

σ2(σ2 + τnljk)

(
sljk

)2

+ log

(
σ2

σ2 + τnrjk

)
+

τ

σ2(σ2 + τnrjk)

(
srjk
)2
,

where nljk = |AL(j, k)| and nrjk = |AR(j, k)| are number of data observations on left or right child

node if split at cutpoint (j, k). sljk and srjk are sufficient statistics

sljk =
∑

i:xi∈AL(j,k)

yi, srjk =
∑

i:xi∈AR(j,k)

yi.

Similarly, the log-probability of no-split is

(8) log

(
|C|
(

(1 + d)β

α
− 1

))
+ log

(
σ2

σ2 + τn

)
+

τ

σ2(σ2 + τn)
s2.

For notational simplicity, we overload n as the number of data observations in the current node

and s is sum of all y in the current node. It is apparent that n = nljk + nrjk and s = sljk + srjk for

all cutpoints (j, k). Note that the split criterion involves residual standard error σ, meaning that it

is adaptively regularizing within the model fitting process.

15

If the no-split option is selected or stopping conditions are satsified, we label this node as leaf

Alb, the b-th leaf of l-th tree. Leaf parameter µlb associated with leaf Alb is updated in step 10

of Algorithm 2. We assume a conjugate Gaussian prior µlb ∼ N(0, τ), therefore the posterior to

sample from is

(9) µlb ∼ N

(
slb

σ2
(

1
τ + nlb

σ2

) , 1
1
τ + nlb

σ2

)
,

where nlb is number of data observations and slb =
∑

y∈Alb y is the sufficient statistic in the leaf

node corresponding to leaf parameter µlb.

Next, we describe the model parameter sampling steps in Algorithm 3. The only non-tree model

parameter for Gaussian nonlinear regression is the residual variance σ2, which updates after one

draw of a tree in step 10 of Algorithm 3. For σ2 we assume a standard inverse-Gamma prior,

σ2 ∼ inverse-Gamma(a, b), and the posterior is

(10) σ2 ∼ inverse-Gamma
(
N + a, r̃

(iter)t
h r̃

(iter)
h + b

)
,

where r̃
(iter)
h is the total residual after updating the h-th tree in the iter-th Monte Carlo iteration,

defined as

r̃
(iter)
h ≡ y −

∑
h′≤h

g(X;Th′ , µh′)
(iter+1) −

∑
h′>h

g(X;Th′ , µh′)
(iter).

Remark The derivations above pertain to growing a single tree by Algorithm 2. Note that in the

context of the forest, the data y in the above would instead be the residual rh.

The default parameters, used in all simulations reported here, are L = 30 trees and τ = Var(y)/L.

3.1. Model implied by the GrowFromRoot algorithm. The XBART cutpoint sampling, while

based on Bayes rule, is myopic in the sense that it does not consider the entire tree structure when

evaluating its (marginal) likelihood. In particular, the recursive structure of a binary tree implies

that the data is “reused” at different levels of the tree.

However, interestingly, in the case of a single tree it is possible to show that GrowFromRoot can

be interpreted as a proper Bayesian model, as follows. From equation (5), the integrated likelihood

of a single leaf is Gaussian with mean a vector of zeros and precision matrix

Ω := V−1 = σ−2I− τ

σ2(σ2 + τn)
JJt,

where I is a n × n identity matrix and J is a vector of ones with length n. Now, regard the tree

growing algorithm as an exhaustive one, always growing maximum depth trees (relative to X):

16

φ(y; 0,Ω0)π(Ω0)

φ(y; 0,Ω1)π(Ω1 | Ω0) φ(y; 0,Ω2)π(Ω2 | Ω0)

φ(y; 0,Ω3)π(Ω3 | Ω2) φ(y; 0,Ω4)π(Ω4 | Ω2)

no yes

no yes

(a) Nodes and corresponding precision matrices.

Ω0 =

 ,Ω1 =

 ,Ω2 =

Ω3 =

Ω4 =

(b) Precision matrices

Fig 2: An illustration of the precision matrices at each node, from root to leaves. Left panel:
assignment of precision matrix at each node. Right panel: illustration of precision matrices, where
grey block represents non-zero elements and white blocks are 0.

while the tree keeps splitting, the integrated likelihood is a Gaussian likelihood; once a node stops

splitting, the likelihood of all the nodes beneath it degenerate to 1.

The posterior of a single tree model is

(11) πgfr(T | y) ∝
B∏
i=0

φ(y; 0,Ωi)P (i),

where B is number of all nodes in the tree, and φ(y; 0,Ω) is a multivariate Gaussian PDF with

precision matrix Ω and P (i) = α(1 +di)
−β is the BART prior probability of the i-th node reaching

depth di. Figure 2 illustrates the assignment and structure of precision matrices. All precision

matrices have the same dimension n, the total number of observations. Since each non-root node

only has a subset of the data, the precision matrix has a block-diagonal structure with a non-zero

sub-matrix on the diagonal indicating correlation of data observations in that node and 0 elsewhere

(it is always possible to rearrange order of the data to make the precision matrix block-diagonal).

The cumulative product of Gaussian kernels in equation (11) represents another Gaussian kernel

up to a normalizing constant

(12)

B∏
i=1

φ(y; 0,Ωi)P (i) = exp (ξi=1,··· ,B − ξB) exp

(
ξB −

1

2
ytΩBy

) B∏
i=1

P (i),

where ΩB =
∑B

i=1 Ωi, ξB = −1
2

(
N log(2π)− log |ΩB|

)
and ξi=1,··· ,B =

∑B
i=1−

1
2 (N log(2π)− log |Ωi|).

Therefore, we may consider the GrowFromRoot likelihood to be the single multivariate Gaussian

(13) φ(y; 0,ΩB) = exp

(
ξB −

1

2
ytΩBy

)
,

17

in which the data only appear once, and the implied prior of GrowFromRoot (which does not

include y), is

(14) exp (ξi=1,··· ,B)
B∏
i=1

P (i).

On the other hand, the BART posterior is

(15) πbart(T | y) ∝
∏
i∈Leaf

φ(y; 0,Ωi)
B∏
i=1

P (i),

Here the likelihood is
∏
i∈Leaf φ(y; 0,Ωi) and the prior is

∏B
i=1 P (i).

Remark The discussion above is only to show that the GrowFromRoot sampling process can be

considered a well defined model, but it is not the one that is used to sample leaf parameters.

Indeed, the multivariate Gaussian model above corresponds to building up the mean function from

a weighted average of node-specific mean vectors. We attempted estimating the mean parameters in

this fashion and it was dramatically outperformed by using only the leaf parameters, as in BART.

Nonetheless, the GrowFromRoot algorithm appears to produce samples of trees that perform well

in conjunction with the leaf-only estimation method of the conditional means.

4. Theory of Consistency. Tree-based methods have a substantial, if incomplete, body of

theory going back several decades. Gordon and Olshen (1980) analyze the consistency of recursive

partitioning irrespective of the specific split criterion; to achieve this they assume that the diameter

of leaf node hyperrectangles shrink to zero at a certain rate. Breiman (2001) gives an upper bound

of the generalization error of random forest, and Lin and Jeon (2006) show a lower bound of the

generalization error of a nonadaptive forest. Biau et al. (2008) and Ishwaran et al. (2008) establish

consistency of a simplified random forest model. Scornet et al. (2015) is the first consistency result of

the original random forest algorithm, and their theory applies to the consistency of CART directly.

Wager and Athey (2018) study the asymptotic sampling distribution of random forest. Zhang et al.

(2005) prove consistency and derive the convergence rate for boosting with early stopping, although

the result is non-constructive in that their results are not known to apply to any specific stopping-

rule. Bartlett and Traskin (2007) establish consistency theory for the adaBoost algorithm.

There has also been a surge of recent theoretical results for BART. Coram et al. (2006) prove

consistency for Bayesian histograms of binary regression. Rocková and van der Pas (2017) prove

posterior consistency for a variant of the BART prior and Ročková and Saha (2019) study posterior

18

concentration of the exact BART prior. Linero and Yang (2018) establish posterior consistency for

a fractional posterior of soft BART (SBART), whose trees have soft decision rules.

In this section, we prove the consistency of a single tree of the XBART algorithm for the Gaussian

nonlinear regression case. First, we establish the connection of our XBART sampling strategy to

the optimization approach in CART by applying the perturb-max theorem. Having reconciled the

sampling versus optimizing distinction, we are then able to adapt the consistency proof for CART

to the XBART split criterion. The key step of the proof is to show that variation of the true

function is small in each hyper-rectangular cells associated to a leaf node, as the number of data

observations grows large enough, either because the diameter of the cell shrinks to zero or because

the true function is flat over that region. We follow the proof of Scornet et al. (2015) closely.

Before diving into the theorem and proofs, we again review notations. Suppose x ∈ [0, 1]p is a

vector of input variables and y ∈ R1 is the corresponding outcome variable. Our goal is to estimate

the regression function f(x) = E[y | x] as fn : (0, 1)p → R based on data {(y1,x1), · · · , (yn,xn)}.

Let dn denote maximum depth of a tree.

A key assumption of Scornet et al. (2015) is that the regression function is additive,

Assumption 1 (A1).

y =

p∑
j=1

fj(x
(j)) + ε

where x = (x(1), · · · ,x(p)) is uniformly distributed on [0, 1]p. ε ∼ N(0, σ2).

See the remark following Lemma 2 concerning the possibility of relaxing this strong assumption.

We show consistency for the case of regression with Gaussian noise and focus on a variant of

XBART algorithm which only contains a single tree. Our main theorem states that a single XBART

regression tree approximates the true underlying mean function in L2 norm if maximum depth goes

to infinity slower than a function of the number of data points.

Theorem 3. Assume (A1) holds. Let n→∞, dn →∞ and (2dn − 1)(log n)9/n→ 0, XBART

is consistent in the sense that

(16) lim
n→∞

E[fn(x)− f(x)]2 = 0.

Both a single-tree XBART and CART learn decision rules by a recursive algorithm, but with

a different way of selecting cutpoints. CART optimizes its split criterion while XBART draws

19

cutpoints randomly with probability proportional to the split criterion. However, sampling from a

so-called perturb-max model is equivalent to optimizing an objective function with an additional

random draw from Gumbel(0, 1) distribution, see Corollary 6.2 from Hazan et al. (2016), restated

here for the sake of completeness.

Lemma 1 (Perturb-max theorem). Suppose there are |C| finite cutpoint candidates {cjk} at a

specific node. We are interested in drawing one of them according to probability P (cjk) =
exp(l(cjk))∑

cjk∈C
exp(l(cjk)) .

We have

(17)
exp(l(cjk))∑

cjk∈C exp(l(cjk))
= P

(
cjk = arg max

cjk∈C
{l(cjk) + γjk}

)
where {γjk} are independent random draws from a Gumbel(0, 1) distribution with density p(x) =

exp(−x+ exp(−x)).

The independent random draws {γjk} can be treated as known constants if conditioning on a

random seed Θ, as in Scornet et al. (2015). That is, Θ is used to sample Gumbel random draws, and

we always assume taking the condition of Θ in the following proof. Lemma 1 states that XBART’s

sampling cutpoint strategy is equivalent to optimizing an objective function. Thus CART and

XBART fitting algorithms only differ in the specific form of the split criterion to optimize. Our

proof of consistency is based on the work of Scornet et al. (2015), where only Lemma 1 and Lemma

2 involve the specific function form of split criterion. Therefore we only have to check that Lemma

1 and Lemma 2 of Scornet et al. (2015) are still valid for the XBART split criterion. Recalling

equation (7), the logarithm of the split criterion cjk is

l(cjk) = log

(
σ2

σ2 + τnljk

)
+

τ

σ2
(
σ2 + τnljk

)
 ∑
i:xi∈AL(j,k)

yi

2

+ log

(
σ2

σ2 + τnrjk

)
+

τ

σ2
(
σ2 + τnrjk

)
 ∑
i:xi∈AR(j,k)

yi

2

=
τ

σ2
(
σ2 + τnljk

)
nljk ∑

i:xi∈AL(j,k)

y2
i − (nljk − 1)

∑
i:xi∈AL(j,k)

(yi − ȳl)2

+

τ

σ2
(
σ2 + τnrjk

)
nrjk ∑

i:xi∈AR(j,k)

y2
i − (nrjk − 1)

∑
i:xi∈AR(j,k)

(yi − ȳr)2

+ log

(
σ2

σ2 + τnljk

)
+ log

(
σ2

σ2 + τnrjk

)
,

20

where ȳl = 1
nljk

∑
i:xi∈AL(j,k) yi and ȳr = 1

nrjk

∑
i:xi∈AR(j,k) yi are averagea of y in the left and right

children respectively. Following Lemma 1, we optimize

c∗jk = arg max
cjk∈C

{l(cjk) + γjk},

where γi are random draws from Gumbel(0, 1) and can be treated as fixed constant if we condition

on random seed Θ. Note that the optimization problem is invariant if the objective function is

scaled by a constant n, used here to denote the number of observations in the current node, so that

arg max
cjk∈C

l(cjk)

n
+
γjk
n
.

and our “empirical” split criterion (in the terminology of Scornet et al. (2015)) is defined as

(18) Ln(cjk) =
l(cjk)

n
+
γx
n
.

Letting n→∞, our empirical split criterion function Ln(x) converges to the “theoretical” version

(19) L∗(j, cjk) =
1

σ2
P (x(j) ≤ cjk)

[
E(y | x(j) ≤ cjk)

]2
+

1

σ2
P (x(j) > cjk)

[
E(y | x(j) > cjk)

]2
.

Importantly, L∗(j, cjk) does not rely on the training data because, by the strong law of large

numbers, Ln(cjk)→ L∗(cjk) almost surely as n→∞. Again following Scornet et al. (2015), we refer

to a tree grown according to the empirical split criterion Ln(cjk) or the theoretical criterion L∗(cjk)

as an empirical tree or theoretical tree, respectively. It worth emphasizing that the theoretical split

criterion of XBART and CART are the same up to a multiplicative constant 1/σ2.

In the rest of the section, we recap the proof of consistency for CART and random forest by

Scornet et al. (2015) and verify that all lemmas involving the CART split criterion are also valid

for that of XBART, equation (18).

More notation is needed for the proof. Write c = (c(1), c(2)) to represent a cutpoint, where

c(1) ∈ {1, · · · , p} indicates cut variables and c(2) ∈ [0, 1] indicates cut values. Let An(x,Θ) denote

the leaf node of an empirical tree built with random parameter Θ that contains x. Let A∗k(x,Θ) be

a cell of the theoretical tree at depth k containing x. Additionally, A(x, ck) is the node containing

x built with sequence of cuts ck. This node is reached via a sequence of cuts ck = (c1, · · · , ck) and

we call Ak(x) the set of all possible k ≥ 1 cuts used to create the node containing x. The distance

between two cut sequences ck, c
′
k ∈ Ak(x) is defined as

||ck − c′k||∞ = sup
1≤j≤k

max
(∣∣∣c(1)

j − c
′(1)
j

∣∣∣ , ∣∣∣c(2)
j − c

′(2)
j

∣∣∣) .
21

The distance between a cut ck and a set A ⊂ Ak(x) is

c∞(ck,A) = inf
c∈A
||ck − c||∞.

We define the total variation of the true function f within any leaf node A as

∆(f,A) = sup
x,x′∈A

|f(x)− f(x′)|.

The proof of Theorem 3 relies critically on the following proposition:

Proposition 1. Assume (A1) holds. For all ρ > 0 and ξ > 0, there exists an N ∈ N∗ such

that, for all n > N ,

(20) P [∆(f,An(x,Θ)) ≤ ξ] ≥ 1− ρ.

Proposition 1 states that the total variation of the true function f within any leaf node of the

empirical tree is small if the number of observations, n, used to fit the tree is large enough. In

general, the consistency result controling the behavior of the true function on each of the partitions

defined by the leaf nodes, in that either the cell diameter shrinks to zero or else the true function is

constant over any non-vanishing cell. The proof of Proposition 1 is based on three lemmas below.

Lemma 2 and Lemma 3 are the only two pieces involving the specific functional form of the split

criterion in the complete proof of Theorem 3.

Lemma 2. Assume that (A1) holds. Then for all x ∈ (0, 1)p,

∆(f,A∗k(x,Θ))→ 0 almost surely as k →∞.

Lemma 2 shows that as n→∞ and tree grows deeper, variation of the true function f tends to

zero in the leaf node of a theoretical tree.

Remark Assumption (A1) is used in the proof of Lemma 2 only. If the true function f is additive,

Lemma 2 is valid. However, a weaker replacement of assumption (A1) is to assume Lemma 2 is

valid directly. Although this is perhaps less interpretable than an assumption of an additive model,

it is also presumably a weaker assumption in that it may be satisfied by non-additive models.

Next, we show that the cuts of an empirical tree will be close to its associated theoretical

tree in a certain sense. Suppose the empirical tree has grown following a sequence of cuts ck−1,

and consider splitting node A(x, ck−1). Let AL(x, ck−1) = A(x, ck−1) ∩ {x : x(c
(1)
k) ≤ c

(2)
k } and

22

AR(x, ck−1) = A(x, ck−1) ∩ {x : x(c
(1)
k) > c

(2)
k } be left and right child nodes of node A(x, ck−1)

given cut ck. We write the split criterion equation (18) explicitly for A(x, ck−1),

Ln,k(x, ck) =
1

n

τ

σ2 (σ2 + τNn(AL(x, ck−1)))

Nn(AL(x, ck−1))
∑

i:xi∈Nn(AL(x,ck−1))

y2
i

−(Nn(AL(x, ck−1))− 1)
∑

i:xi∈Nn(AL(x,ck−1))

(yi − ȳAL(x,ck−1))
2

+

1

n

τ

σ2 (σ2 + τNn(AL(x, ck−1)))

Nn(AL(x, ck−1))
∑

i:xi∈AR(x,ck−1)

y2
i

−(Nn(AL(x, ck−1))− 1)
∑

i:xi∈AR(x,ck−1)

(yi − ȳr)2

+

1

n
log

(
σ2

σ2 + τNn(AL(x, ck−1))

)
+

1

n
log

(
σ2

σ2 + τNn(AR(x, ck−1))

)
.

Lemma 3 below states that Ln,k(x, ck) is “stochastically equicontinuous” on ck for all x ∈ [0, 1]p. For

all ξ > 0 and x ∈ [0, 1]p, Aξk−1(x) ⊂ Ak−1(x) denotes the set of all sequences of cuts ck−1 such that

the nodeA(x, ck−1) contains a hypercube with edge length ξ. The set Āξk(x) = {ck : ck−1 ∈ Aξk−1(x)}

is equipped with norm || · ||∞.

Lemma 3. Assume that (A1) holds. Fix x ∈ [0, 1]p, k ∈ N∗ and let ξ > 0. Then Ln,k(x,)̇ is

stochastically equicontinuous on Āξk(x), that is, for all α, ρ > 0, there exist δ > 0 such that

lim
n→∞

P

 sup
||ck−c′k||∞≤δ
ck,c

′
k∈Āξk(x)

∣∣Ln,k(x, ck)− Ln,k(x, c′k)∣∣ > α

 ≤ ρ.
Lemma 3 is used in the proof of Lemma 4 below.

Lemma 4. Assume that (A1) holds. Fix ξ > 0, ρ > 0, and k ∈ N∗. Then there exists N ∈ N∗

such that for all n ≥ N ,

(21) P [c∞(ĉk,n(x,Θ),A∗k(x,Θ)) ≤ ξ] ≥ 1− ρ.

Lemma 4 states that the empirical tree converges to the theoretical tree in probability. The proof

of Proposition 1 is the same as in Scornet et al. (2015) and so is omitted here. Only proofs of Lemma

2 and 3 rely on the specific form of split criterion; complete proofs are presented in the Appendix.

23

Finally, we are equipped to prove Theorem 3. Proposition 1 offers good control of approximation

error if the tree is grown by the XBART split criterion. There are two steps for the proof. First, the

result is proved for the case of a truncated estimator, which is based on Theorem 10.2 of Györfi et al.

(2006), presented as Theorem 4 below. Then, the truncation is released to prove the untruncated

case.

The truncation Tβn is defined as
Tβn(u) = u if |u| ≤ βn

Tβn(u) = sign(u)βn if |u| > βn

where {βn} is a sequence of positive real numbers. The partition obtained with random variable Θ

and data set Dn is denoted by Pn. Let Mn(Θ) is the set of all functions m : [0, 1]p → R which is

piecewise constant on each node of the partition Pn(Θ).

Theorem 4 (Györfi et al. (2006)). Assume that

1. limn→∞ βn =∞;

2. limn→∞ E

[
infm∈Mn(Θ)
||m||∞≤βn

EX [m(x)− f(x)]2
]

= 0;

3. for all truncations at L > 0,

lim
n→∞

E

 sup
m∈Mn(Θ)
||f ||∞≤βn

∣∣∣∣∣ 1

an

n∑
i=1

[m(xi)− TL (yi)]
2 − E [m(x)− TL(y)]2

∣∣∣∣∣
 = 0.

Then

lim
n→∞

E[Tβn (fn(X,Θ))− f(X)]2 = 0.

It is sufficient to verify the three assumptions of Theorem 4 to show that the truncated estimator

is consistent. Intuitively, the first condition says that the truncation is relaxed as n→∞, and the

next two conditions control the approximation error and the estimation error, respectively. For the

sake of brevity, we skip the proof. Interested readers may refer to Scornet et al. (2015) for details.

5. Simulation Studies.

5.1. Time-accuracy comparisons to other popular machine learning methods.

24

5.1.1. Synthetic regression data. To demonstrate the performance of XBART, we estimate func-

tion evaluations with a hold-out set that is a quarter of the training sample size and judge accuracy

according to root mean squared (estimation) error (RMSE). We consider four different challenging

functions, f , as defined in Table 1. In all cases, xj
iid∼N(0, 1) for j = 1, . . . , d = 30. The data is

generated according to the additive error mode, with εi
iid∼N(0, 1). We consider σ = κVar(f) for

κ ∈ {1, 10}.

Table 1
Four true f functions

Name Function

Linear xtγ; γj = −2 + 4(j−1)
d−1

Single index 10
√
a+ sin (5a); a =

∑10
j=1(xj − γj)2; γj = −1.5 + j−1

3 .

Trig + poly 5 sin(3x1) + 2x22 + 3x3x4
Max max(x1, x2, x3)

We compare to leading machine learning algorithms: random forests, gradient boosting ma-

chines, neural networks, and BART. All implementations had an R interface and were the current

fastest implementations to our knowledge: ranger (Wright and Ziegler, 2015), xgboost (Chen and

Guestrin, 2016), and Keras (Chollet et al., 2015), dbarts respectively. For Keras we used a single

architecture but varied the number of training epochs depending on the noise level of the problem.

For xgboost we consider two specifications, one using the software defaults and another determined

by a 5-fold cross-validated grid optimization (see Table 2); a reduced grid of parameter values was

used at sample sizes n > 10, 000. Comparison with ranger and dbarts are shown in supplementary

material.

Table 2
Hyperparameter Grid for XGBoost

Parameter name N = 10K N > 10K
eta {0.1, 0.3} {0.1, 0.3}
max depth {4, 8, 12} {4, 12}
colsample bytree {0.7, 1} {0.7, 1}
min child weight {1, 10, 15} 10
subsample 0.8 0.8
gamma 0.1 0.1

The software used is R version 3.4.4 with XGBoost 0.71.2, dbarts version 0.9.1, ranger 0.10.1

and keras 2.2.0. The default hyperparameters for XGBoost are eta = 0.3, colsample bytree

= 1, min child weight = 1 and max depth = 6. Ranger was fit with num.trees = 500 and mtry

= 5 ≈
√
d. BART, with the package dbarts, was fit with the defaults of ntrees = 200, alpha

25

= 0.95, beta = 2, with a burn-in of 5,000 samples (nskip = 5000) and 2,000 retrained posterior

samples (ndpost = 2000).

The default dbarts algorithm uses an evenly spaced grid of 100 cutpoint candidates along the

observed range of each variable (numcuts = 100, usequants = FALSE). For Keras we build a

network with two fully connected hidden layers (15 nodes each) using ReLU activation function, `1

regularization at 0.01, and with 50/20 epochs depending on the signal to noise ratio.

5.1.2. Results. The performance of the new XBART algorithm was excellent, showing superior

speed and performance relative to all the considered alternatives on virtually every data generating

process. The full results, averaged across five Monte Carlo replications, are reported in Table 3.

Neural networks perform as well as XBART in the low noise settings under the Max and Linear

functions. Unsurprisingly, neural networks outperform XBART under the linear function with low

noise. Across all data generating processes and sample sizes, XBART was 31% more accurate than

the cross-validated XGBoost method and typically faster. Specifically, the supplement examines

the empirical examples given in Chipman et al. (2010).

The XBART method was slower than the untuned default XGBoost method but was 350% more

accurate. This pattern points to one of the main benefits of the proposed method, which is that

it has excellent performance using the same hyperparameter settings across all data generating

processes. Importantly, these default hyperparameter settings were decided on the basis of prior

elicitation experiments using different true functions than were used in the reported simulations.

While XGBoost is quite fast, the tuning processes are left to the user and can increase the total

computational burden by orders of magnitude.

Random forests and BART were prohibitively slow at larger sample sizes. However, at n = 10, 000

several notable patterns did emerge; see the supplementary material for full details. First was that

BART and XBART typically gave very similar results, as would be expected. BART performed

slightly better in the low noise setting and quite a bit worse in the high noise setting (likely due

to inadequate burn-in period). Similarly, random forests do well in higher noise settings, while

XGBoost and neural networks perform better in lower noise settings.

5.2. Warm-start BART MCMC. In this section, we demonstrate the advantage of initializing

BART MCMC at XBART draws. The data generating process is the same as section 5.1.1, and

the data size is fixed at 10,000 while noise level κ varies. We fit 40 XBART forests, the first 15 are

26

Table 3
Root mean squared error (RMSE) of each method. Column XGBoost +CV is result of XGBoost with tuning

parameter by cross validation and column NN is result of neural networks. The number in parenthesis is running
time in seconds. First column is number of data observations (in thousands).

κ = 1

n XBART XGBoost +CV XGBoost NN

Linear

10k 1.74 (20) 2.63 (64) 3.23 (0) 1.39 (26)
50k 1.04 (180) 1.99 (142) 2.56 (4) 0.66 (28)

250k 0.67 (1774) 1.50 (1399) 2.00 (55) 0.28 (40)

Max

10k 0.39 (16) 0.42 (62) 0.79 (0) 0.40 (30)
50k 0.25 (134) 0.29 (140) 0.58 (4) 0.20 (32)

250k 0.14 (1188) 0.21 (1554) 0.41 (60) 0.16 (44)

Single Index

10k 2.27 (17) 2.65 (61) 3.65 (0) 2.76 (28)
50k 1.54 (153) 1.61 (141) 2.81 (4) 1.93 (31)

250k 1.14 (1484) 1.18 (1424) 2.16 (55) 1.67 (41)

Trig + Poly

10k 1.31 (17) 2.08 (61) 2.70 (0) 3.96 (26)
50k 0.74 (147) 1.29 (141) 1.67 (4) 3.33 (29)

250k 0.45 (1324) 0.82 (1474) 1.11 (59) 2.56 (41)

κ = 10

n XBART XGBoost +CV XGBoost NN

Linear

10k 5.07 (16) 8.04 (61) 21.25 (0) 7.39 (12)
50k 3.16 (135) 5.47 (140) 16.17 (4) 3.62 (14)

250k 2.03 (1228) 3.15 (1473) 11.49 (54) 1.89 (19)

Max

10k 1.94 (16) 2.76 (60) 7.18 (0) 2.98 (15)
50k 1.22 (133) 1.85 (139) 5.49 (4) 1.63 (16)

250k 0.75 (1196) 1.05 (1485) 3.85 (54) 0.85 (22)

Single Index

10k 7.13 (16) 10.61 (61) 28.68 (0) 9.43 (14)
50k 4.51 (133) 6.91 (139) 21.18 (4) 6.42 (16)

250k 3.06 (1214) 4.10 (1547) 14.82 (54) 4.72 (21)

Trig + Poly

10k 4.94 (16) 7.16 (61) 17.97 (0) 8.20 (13)
50k 3.01 (132) 4.92 (139) 13.30 (4) 5.53 (14)

250k 1.87 (1216) 3.17 (1462) 9.37 (49) 4.13 (20)

thrown out as burn-in draws, and 25 forest draws are retained. BART was fit with a burn-in of 1,000

samples, and 2,500 retrained posterior samples. For the warm-start BART, 25 independent BART

MCMC chains were initialized at the 25 forest draws obtained from XBART and each was run for

100 iterations with no burn-in. Note that the total number of posterior draws is 2,500, the same as

the number of posterior draws by BART. We repeat drawing synthetic data and computing intervals

27

100 times, all measurement below were taken average with respect to those 100 replications.

Table 4
Coverage and length of credible interval of f at 95% level for warm-start BART MCMC. The table also shows

running time (in seconds) and root mean squared error (RMSE) of all approaches.

κ = 1

XBART BART Warm-start BART

Max

coverage 0.86 0.78 0.95
interval length 0.36 0.35 0.46
running time 1.57 44.41 1.21 (31.82)
RMSE 0.11 0.14 0.11

Trig + Poly

coverage 0.90 0.74 0.96
interval length 3.61 2.89 4.23
running time 4.68 92.75 3.02 (80.18)
RMSE 1.03 1.27 1.01

Single Index

coverage 0.77 0.73 0.87
interval length 4.84 4.62 5.88
running time 5.10 102.87 2.97 (79.35)
RMSE 1.94 2.08 1.92

Linear

coverage 0.78 0.77 0.99
interval length 7.82 6.14 9.92
running time 5.61 131.17 3.85 (101.86)
RMSE 3.11 2.51 1.81

κ = 2

XBART BART Warm-start BART

Max

coverage 0.88 0.84 0.97
interval length 0.58 0.64 0.76
running time 1.35 40.23 1.22 (31.85)
RMSE 0.17 0.22 0.17

Trig + Poly

coverage 0.90 0.82 0.96
interval length 5.62 5.06 6.86
running time 3.68 86.81 2.90 (74.17)
RMSE 1.65 1.87 1.60

Single Index

coverage 0.81 0.83 0.91
interval length 6.81 7.67 8.49
running time 3.92 90.70 2.81 (74.0490)
RMSE 2.51 2.73 2.47

Linear

coverage 0.50 0.83 0.98
interval length 6.53 8.82 11.84
running time 3.61 109.43 3.33 (86.86)
RMSE 4.74 4.13 2.53

Table 4 shows the credible interval coverage, length, RMSE of the point estimate, and running

time of the three approaches. The running time for warm-start BART is reported as time in seconds

for a single indepedent BART MCMC, while the number in parenthesis is the running time of the

entire warm-start BART fitting process, including XBART fit and assuming all 25 indepedent

warm-start BART MCMC were fitted sequentially rather than in parallel. In other words, the

28

number in parentheses is the most conservative estimation of the total running time, because the

25 independent BART chains can be trivially parallelized to achieve much lower total running time.

Indeed, with 25 processors, the run time would be the XBART run time plus the warm-start run

time (not in parentheses).

The warm-start BART boasts a substantial advantage in terms of credible interval coverage

and root mean squared error. In all cases, warm-start BART has the best coverage and RMSE

among all three approaches and is still faster than BART under the most conservative estimation

of running time. Especially when the true function is linear, warm-start initialization helps BART

get a considerable improvement in estimation, which may indicated inadequate chain length of

BART (that is, poor mixing).

6. Discussion. In this paper, we have introduced a novel tree-based ensemble framework,

XBART, for supervised learning, that has a wide range of applicability. We demonstrated the ad-

vantage of the algorithm in simulation studies: XBART has state-of-the-art prediction accuracy with

computational demands that are competitive with alternatives. While this paper has focused on

Gaussian nonlinear regression, the proposed algorithm extends to other settings straightforwardly,

such as logit multi-class classification, binary probit classification, Poisson regression, or classifica-

tion by a central-limit approximation; these extensions will be described in separate forthcoming

manuscripts.

While we proved the consistency of a single XBART tree in this paper, an open question is

whether the forest is consistent or not. One proof strategy would be to make a minor modification

of the model wherein an initial tree is fit to the data and then a forest is fit to the residual. By

consistency of the initial tree, the residual will eventually converge to pure noise and a proof would

need to show that the resulting Markov Chain had expectation of zero in the large data limit.

Another interesting research topic is the connection between XBART and full Bayesian meth-

ods. In this paper we show that the warm-start provided by XBART helps the MCMC algorithm

converge faster and attain better credible interval coverage. Although we show the forest is a

Markov chain with stationary distribution, it is still not clear if the algorithm is a Gibbs sampler

corresponding to a valid posterior.

The software package XBART is available online at http://www.github.com/jingyuhe/xbart for

both R and python.

29

http://www.github.com/jingyuhe/xbart

References.

Bartlett, P. L. and M. Traskin (2007). Adaboost is consistent. Journal of Machine Learning Research 8 (Oct),

2347–2368.

Biau, G., L. Devroye, and G. Lugosi (2008). Consistency of random forests and other averaging classifiers. Journal

of Machine Learning Research 9 (Sep), 2015–2033.

Breiman, L. (1996). Bagging predictors. Machine learning 24 (2), 123–140.

Breiman, L. (1997). Arcing the edge. Technical report, Statistics Department, University of California at Berkeley.

Breiman, L. (2001). Random forests. Machine learning 45 (1), 5–32.

Breiman, L., J. Friedman, R. Olshen, and C. J. Stone (1984). Classification and regression trees. Chapman and

Hall/CRC.

Chen, T. and C. Guestrin (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM.

Chipman, H. A., E. I. George, and R. E. McCulloch (1998). Bayesian CART model search. Journal of the American

Statistical Association 93 (443), 935–948.

Chipman, H. A., E. I. George, and R. E. McCulloch (2007). Bayesian ensemble learning. In Advances in neural

information processing systems, pp. 265–272.

Chipman, H. A., E. I. George, R. E. McCulloch, et al. (2010). BART: Bayesian additive regression trees. The Annals

of Applied Statistics 4 (1), 266–298.

Chollet, F. et al. (2015). Keras.

Coram, M., S. P. Lalley, et al. (2006). Consistency of Bayes estimators of a binary regression function. The Annals

of Statistics 34 (3), 1233–1269.

Denison, D. G., B. K. Mallick, and A. F. Smith (1998). A Bayesian CART algorithm. Biometrika 85 (2), 363–377.

Freund, Y. and R. E. Schapire (1997). A decision-theoretic generalization of on-line learning and an application to

boosting. Journal of computer and system sciences 55 (1), 119–139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis 38 (4), 367–378.

Gordon, L. and R. A. Olshen (1980). Consistent nonparametric regression from recursive partitioning schemes.

Journal of Multivariate Analysis 10 (4), 611–627.

Gramacy, R. B. and H. K. H. Lee (2008). Bayesian treed Gaussian process models with an application to computer

modeling. Journal of the American Statistical Association 103 (483), 1119–1130.

Györfi, L., M. Kohler, A. Krzyzak, and H. Walk (2006). A distribution-free theory of nonparametric regression.

Springer Science & Business Media.

Hahn, P. R., J. S. Murray, C. M. Carvalho, et al. (2020). Bayesian regression tree models for causal inference:

regularization, confounding, and heterogeneous effects. Bayesian Analysis.

Hazan, T., G. Papandreou, and D. Tarlow (2016). Perturbations, Optimization, and Statistics. MIT Press.

He, J., S. Yalov, and P. R. Hahn (2019). XBART: Accelerated Bayesian additive regression trees. In The 22nd

International Conference on Artificial Intelligence and Statistics, pp. 1130–1138.

Hill, J., A. Linero, and J. Murray (2020). Bayesian additive regression trees: A review and look forward. Annual

30

Review of Statistics and Its Application 7.

Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical

Statistics 20 (1), 217–240.

Ishwaran, H., U. B. Kogalur, E. H. Blackstone, M. S. Lauer, et al. (2008). Random survival forests. The annals of

applied statistics 2 (3), 841–860.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu (2017). LightGBM: A highly efficient

gradient boosting decision tree. In Advances in Neural Information Processing Systems, pp. 3146–3154.

Kindo, B. P., H. Wang, and E. A. Peña (2016). Multinomial probit Bayesian additive regression trees. Stat 5 (1),

119–131.

Laurent, B. and P. Massart (2000). Adaptive estimation of a quadratic functional by model selection. Annals of

Statistics, 1302–1338.

Lin, Y. and Y. Jeon (2006). Random forests and adaptive nearest neighbors. Journal of the American Statistical

Association 101 (474), 578–590.

Linero, A. R. (2017). A review of tree-based Bayesian methods. Communications for Statistical Applications and

Methods 24 (6).

Linero, A. R. (2018). Bayesian regression trees for high-dimensional prediction and variable selection. Journal of the

American Statistical Association 113 (522), 626–636.

Linero, A. R., D. Sinha, and S. R. Lipsitz (2019). Semiparametric mixed-scale models using shared bayesian forests.

Biometrics.

Linero, A. R. and Y. Yang (2018). Bayesian regression tree ensembles that adapt to smoothness and sparsity. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 80 (5), 1087–1110.

Logan, B. R., R. Sparapani, R. E. McCulloch, and P. W. Laud (2019). Decision making and uncertainty quantification

for individualized treatments using Bayesian additive regression trees. Statistical methods in medical research 28 (4),

1079–1093.

Mehta, M., R. Agrawal, and J. Rissanen (1996). SLIQ: A fast scalable classifier for data mining. In International

Conference on Extending Database Technology, pp. 18–32. Springer.

Murray, J. S. (2017). Log-linear Bayesian additive regression trees for multinomial Logistic and count regression

models. arXiv preprint arXiv:1701.01503 .

Pratola, M. (2016). Efficent Metropolis-Hastings proposal mechanism for Bayesian regression tree models. Bayesian

Analysis 11 (3), 885–911.

Pratola, M., H. Chipman, E. George, and R. McCulloch (2017). Heteroscedastic BART using multiplicative regression

trees. arXiv preprint arXiv:1709.07542 .

Pratola, M. T., H. A. Chipman, J. R. Gattiker, D. M. Higdon, R. McCulloch, and W. N. Rust (2014). Parallel

Bayesian additive regression trees. Journal of Computational and Graphical Statistics 23 (3), 830–852.

Rocková, V. (2019). A note on semi-parametric Bernstein-von Mises theorems for BART priors.

Ročková, V. and E. Saha (2019). On theory for BART. In The 22nd International Conference on Artificial Intelligence

and Statistics, pp. 2839–2848.

Rocková, V. and S. van der Pas (2017). Posterior concentration for Bayesian regression trees and forests. arXiv

31

preprint arXiv:1708.08734 .

Scornet, E., G. Biau, J.-P. Vert, et al. (2015). Consistency of random forests. The Annals of Statistics 43 (4),

1716–1741.

Starling, J. E., J. S. Murray, C. M. Carvalho, R. Bukowski, and J. G. Scott (2018). Functional response regression

with funBART: an analysis of patient-specific stillbirth risk. arXiv preprint arXiv:1805.07656 .

Starling, J. E., J. S. Murray, P. A. Lohr, A. R. Aiken, C. M. Carvalho, and J. G. Scott (2019). Targeted smooth

bayesian causal forests: An analysis of heterogeneous treatment effects for simultaneous versus interval medical

abortion regimens over gestation. arXiv preprint arXiv:1905.09405 .

van der Pas, S. and V. Ročková (2017). Bayesian dyadic trees and histograms for regression. In Advances in Neural

Information Processing Systems, pp. 2089–2099.

Wager, S. and S. Athey (2018). Estimation and inference of heterogeneous treatment effects using random forests.

Journal of the American Statistical Association 113 (523), 1228–1242.

Wright, M. N. and A. Ziegler (2015). ranger: A fast implementation of random forests for high dimensional data in

C++ and R. arXiv preprint arXiv:1508.04409 .

Zhang, T., B. Yu, et al. (2005). Boosting with early stopping: Convergence and consistency. The Annals of Statis-

tics 33 (4), 1538–1579.

32

Supplementary Material

APPENDIX A: CATEGORICAL COVARIATES

Section 2.5.1 suggests pre-sorting covariates to compute sufficient statistics efficiently, this strat-

egy is straightforward for continuous covariates. However, because of possible ties in ordered cate-

gorical covariates, a more efficient algorithm is needed to calculate sufficient statistics.

We restate notations in section 2.5.1. Without loss of generality, we assume that all covariates

are categorical. Let O denote the V -by-n array such that ovh denotes the index, in the data, of

the observation with the h-th smallest value of the v-th predictor variable xv. Then, taking the

cumulative sums gives

s(≤, v, c) =
∑
h≤c

rovh

and

s(>, v, c) =
n∑
h=1

rlh − s(≤, v, c).

Algorithm 4 Pseudocode of calculating sufficient statistics for categorical covariates.

1: Sort categorical covariates, create O matrix. Count number of unique observations unique val and val count

vector (suppose vectors are length K).
2: for i from 1 to K do
3: Calculate sufficient statistics for cutpoint candidate unique val[i] as

s(≤, v, unique val[i]) =
∑

h∈[
∑i−1

m=1 val count[m],
∑i

m=1 val count[m]]

rovh .

and

s(>, v, c) =

n∑
h=1

rlh − s(≤, v, c).

4: end for
5: Calculate split criterion, determine a cutpoint.
6: if no-split is selected or stop conditions are reached then
7: Draw leaf parameters and return.
8: else
9: Sift unique val and val count for left and right child nodes. Repeat step 3 when evaluate split criterion at

child nodes.
10: end if

The subscript l on the residual indicates that these evaluations pertain to the update of the lth

tree. Notice that when covariates are categorical, xvh is not necessarily smaller than xv(h+1) due

to potential ties in x. As a result, the number of unique cutpoint candidates is less than n. We

propose an extra data structure to bookkeeping unique cutpoint and number of ties as follows.

For the v-th categorical predictor variable xv, let unique val be a vector of unique values (sorted,

33

from small to large) in xv and val count be a vector of counts of replication for each unique value.

Therefore, the cutpoint candidate is a element in the vector unique val, say the i-th element. Then

the cumulative sums is

s(≤, v, unique val[i]) =
∑

h∈[
∑i−1
m=1 val count[m],

∑i
m=1 val count[m]]

rovh .

When sifting data to left and right child after drawing a cutpoint, we create the same unique val

and val count vector for all categorical covariates with data in two child nodes respectively. See

Algorithm 4 for details.

APPENDIX B: PROOF OF LEMMA 2

First we establish the connection between theoretical split criterion of XBART (equation (19))

and CART. For current node A, the theoretical split criterion of XBART for candidate split at

variable i and value x is

(22)
L∗(x) =

1

σ2
P(x(i) ≤ x | x ∈ A)

[
E(y | x(i) ≤ x,x ∈ A)

]2

+
1

σ2
P(x(i) > x | x ∈ A)

[
E(y | x(i) > x,x ∈ A)

]2
.

The CART theoretical split criterion is

(23)
L∗CART(x) = V(y | x ∈ A)− P(x(j) ≤ x | x ∈ A)V(y | x(j) ≤ x,x ∈ A)

− P(x(j) > x | x ∈ A)V(y | x(j) > x,x ∈ A).

Remember that the cuts is always parallel to axis,

(24) V(y | x(j) ≤ x,x ∈ A) = E(y2 | x(j) ≤ x,x ∈ A)−
[
E(y | x(j) ≤ x,x ∈ A)

]2
.

We have

(25) E(y2 | x(j) ≤ x,x ∈ A) =
1

Ω
({

x(j) ≤ x,x ∈ A
}) ∫

x∈{x(j)≤x,x∈A}
m2(x)dx,

where Ω(A) represents volume of a cube A. Observe that

P(x(j) ≤ x | x ∈ A) =
Ω
({

x(j) ≤ x,x ∈ A
})

Ω(A)
,

34

by easy calculation, we obtain

(26)

E(y2 | x ∈ A)− P(x(j) ≤ x | x ∈ A)E(y2 | x(j) ≤ x,x ∈ A)

− P(x(j) > x | x ∈ A)E(y2 | x(j) > x,x ∈ A)

=
1

Ω(A)

∫
x∈A

m2(x)dx− 1

Ω(A)

∫
x∈{x(j)≤x,x∈A}

m2(x)dx− 1

Ω(A)

∫
x∈{x(j)>x,x∈A}

m2(x)dx

= 0.

As a result, the CART theoretical split criterion is equivalent to

(27)

L∗CART(x) = [E(y | x ∈ A)]2 − P(x(i) ≤ x | x ∈ A)
[
E(y | x(i) ≤ x,x ∈ A)

]2

− P(x(i) > x | x ∈ A)
[
E(y | x(i) > x,x ∈ A)

]2

= [E(y | x ∈ A)]2 − σ2L∗XBART(x).

Since [E(y | x ∈ A)]2 and σ2 are constant, and we maximize L∗XBART(x) but minimize L∗CART(x) in

practice, we claim that the two theoretical split criterions are equivalent. Therefore, the proof of

lemma 2 for CART case in Scornet et al. (2015) can be applied directly without modification. We

refer readers to Scornet et al. (2015) for details.

APPENDIX C: PROOF OF LEMMA 3

C.1. Proof of Lemma 3 for the case k = 1. Preliminary results Let Zi = max1≤i≤n |εi|,

we have

P(Zi ≥ t) = 1− exp [n ln(1− 2P(εi ≥ t))] .

The tail of Gaussian distribution has a standard bound:

(28) P(εi ≥ t) ≤
σ

t
√

2π

(
− t2

2σ2

)
.

As a result, there exist a positive constant Cρ and N1 ∈ N∗ such that with probability 1− ρ, for all n > N1,

(29) max
1≤i≤n

|εi| ≤ Cρ
√

log(n).

In addition, we have

(30) P

[∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ ≥ α
]
≤ σ

α
√
n

exp

(
−α

2n

2σ2

)
.

Let Nn(A) denotes number of data observations in a set A. Next we derive from the inequality above and

union bound inequality that there exists N2 ∈ N∗ such that with probability 1 − ρ, for all n > N2 and all

0 ≤ an ≤ bn ≤ 1 satisfying Nn([an, bn]× [0, 1]p−1) >
√
n,

(31)

∣∣∣∣∣∣ 1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]×[0,1]p−1

εi

∣∣∣∣∣∣ ≤ α.
35

and

(32)
1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]×[0,1]p−1

ε2i ≤ σ̃2.

Furthermore, it’s easy to verify

(33)

∣∣∣∣∣∣ 1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]×[0,1]p−1

Yi

∣∣∣∣∣∣ ≤ ||m||∞ + α,

and

(34)

∣∣∣∣∣∣ 1

Nn([an, bn]× [0, 1]p−1)

∑
i:Xi∈[an,bn]×[0,1]p−1

Y 2
i

∣∣∣∣∣∣ ≤ ||m||2∞ + σ̃2 + 2α||m||∞.

By the Glivenko-Cantelli theorem, there exist N3 ∈ N∗ such that with probability 1−ρ, for all 0 ≤ a ≤ b ≤ 1

and all n > N3,

(35) (b− a− δ2)n ≤ Nn([an, bn]× [0, 1]p−1) ≤ (b− a+ δ2)n.

In the following proof, we assume to be on the event that all claims above holds with probability 1− 3ρ for

all n > N = max{N1, N2, N3}. Take x1, x2 ∈ [0, 1] such that |x1 − x2| < δ and assume that x1 < x2. We

partition the space [0, 1]p into several pieces as follows, see Figure 3 for an illustration of notations for p = 2.

(36)

AL,
√
δ = [0,

√
δ]× [0, 1]p−1

AR,
√
δ = [1−

√
δ, 1]× [0, 1]p−1

AC,
√
δ = [

√
δ, 1−

√
δ]× [0, 1]p−1

.

Similarly,

(37)

AL,1 = [0, x1]× [0, 1]p−1

AR,1 = [x1, 1]× [0, 1]p−1

AL,2 = [0, x2]× [0, 1]p−1

AR,2 = [x2, 1]× [0, 1]p−1

AC = [x1, x2]× [0, 1]p−1

.

Figure 3 illustrates notations

For simplicity, we write the split criterion of the first cut as Ln,1(1, x) denoting split at the first variable,

36

AL,1 AR,1

AL,2 AR,2

AC,
√
δAL,

√
δ AR,

√
δ

AC

√
δ 1−

√
δx1 x20 1

Fig 3: Illustration of notations for p = 2.

at value x. Recall that our split criterion is defined as

(38)

Ln,1(1, x) =
τ

σ2 (σ2 + τNn(AL))

1

n

Nn(AL)
∑

i:x
(1)
i ≤x

y2i − (Nn(AL)− 1)
∑

i:x
(1)
i ≤x

(yi − ȳl)2

+

τ

σ2 (σ2 + τNn(AR))

1

n

Nn(AR)
∑

i:x
(1)
i >x

y2i − (Nn(AR)− 1)
∑

i:x
(1)
i >x

(yi − ȳr)2

+
γx
n
.

The difference of split criterion on two cutpoints x1 and x2 is

(39)

Ln,1(1, x1)− Ln,1(1, x2)

=
τ

σ2 (σ2 + τNn(AL,1))

1

n

Nn(AL,1)
∑

i:x
(1)
i ≤x1

y2i − (Nn(AL,1)− 1)
∑

i:x
(1)
i ≤x1

(yi − ȳAL,1
)2

+

τ

σ2 (σ2 + τNn(AR,1))

1

n

Nn(AR,1)
∑

i:x
(1)
i >x1

y2i − (Nn(AR,1)− 1)
∑

i:x
(1)
i >x1

(yi − ȳAR,1
)2

− τ

σ2 (σ2 + τNn(AL,2))

1

n

Nn(AL,2)
∑

i:x
(1)
i ≤x2

y2i − (Nn(AL,2)− 1)
∑

i:x
(1)
i ≤x2

(yi − ȳAL,2
)2

− τ

σ2 (σ2 + τNn(AR,2))

1

n

Nn(AR,2)
∑

i:x
(1)
i >x2

y2i − (Nn(AR,2)− 1)
∑

i:x
(1)
i >x2

(yi − ȳAR,2
)2

+
γx1

n
− γx2

n
.

We need to prove lemma 3 for all possible cases depending on location of x1 and x2. For notation simplicity,

note that after collecting terms, the difference of split criterion can be represented as summation of points

37

for the range of index {i : x
(1)
i < x1}, {i : x

(1)
i ∈ [x1, x2]} and {i : x

(1)
i > x2}. We will use the same

decomposition throughout the proof.

First case

Assume that x1, x2 ∈ AC,√δ, two cutpoint candidates are not close to the edge. Consider the split criterion

(40)

Ln,1(1, x1)− Ln,1(1, x2)

=
τ

σ2 (σ2 + τNn(AL,1))

1

n

Nn(AL,1)
∑

i:x
(1)
i ≤x1

y2i − (Nn(AL,1)− 1)
∑

i:x
(1)
i ≤x1

(yi − ȳAL,1
)2

+

τ

σ2 (σ2 + τNn(AR,1))

1

n

Nn(AR,1)
∑

i:x
(1)
i >x1

y2i − (Nn(AR,1)− 1)
∑

i:x
(1)
i >x1

(yi − ȳAR,1
)2

− τ

σ2 (σ2 + τNn(AL,2))

1

n

Nn(AL,2)
∑

i:x
(1)
i ≤x2

y2i − (Nn(AL,2)− 1)
∑

i:x
(1)
i ≤x2

(yi − ȳAL,2
)2

− τ

σ2 (σ2 + τNn(AR,2))

1

n

Nn(AR,2)
∑

i:x
(1)
i >x2

y2i − (Nn(AR,2)− 1)
∑

i:x
(1)
i >x2

(yi − ȳAR,2
)2

+
γx1

n
− γx2

n

= J1 + J2 + J3 +
γx1

n
− γx2

n
.

First, take n large enough, we have

(41)
∣∣∣γx1

n
− γx2

n

∣∣∣ ≤ α.

38

Let J2 corresponding to {i | x(1)
i ∈ [x1, x2]}

(42)

J2 =
τ

σ2 (σ2 + τNn(AR,1))

1

n

Nn(AR,1)
∑

i:x
(1)
i ∈[x1,x2]

y2i − (Nn(AR,1)− 1)
∑

i:x
(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

− τ

σ2 (σ2 + τNn(AL,2))

1

n

Nn(AL,2)
∑

i:x
(1)
i ∈[x1,x2]

y2i

−(Nn(AL,2)− 1)
∑

i:x
(1)
i ∈[x1,x2]

(yi − ȳAL,2
)2

=

τNn(AR,1)

σ2 (σ2 + τNn(AR,1))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i

+

τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAL,2
)2

− τ(Nn(AR,1)− 1)

σ2 (σ2 + τNn(AR,1))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

= J21 + J22.

Note that |ax− by| ≤ |a||x− y|+ |a− b||y|, we have

(43)

|J22| =

∣∣∣∣∣∣∣
τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAL,2
)2

− τ(Nn(AR,1)− 1)

σ2 (σ2 + τNn(AR,1))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣

≤
∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAL,2
)2 − 1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣
+

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
− τ(Nn(AR,1)− 1)

σ2 (σ2 + τNn(AR,1))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣ .
Since we assume that x1, x2 ∈ AC,√δ, by equation (35)

(44)

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣ ≤
∣∣∣∣∣ τ(δ2 −

√
δ)n

σ2(σ2 + τ(1− δ2 −
√
δ)n)

∣∣∣∣∣
≤

∣∣∣∣∣ τ(δ2 −
√
δ)

σ2(τ(1− δ2 −
√
δ))

∣∣∣∣∣
= C(δ)→ 0 as δ → 0.

39

Note that this bound is valid for Nn(AL,1),Nn(AL,2),Nn(AR,1) and Nn(AR,2). By inequality (33) and (34),

it is obvious that

(45)

∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

1

N(AC)

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣ ≤M
by a constant M . Furthermore

(46)

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
− τ(Nn(AR,1)− 1)

σ2 (σ2 + τNn(AR,1))

∣∣∣∣ ≤ 2C(δ).

The bound of second term follows equation (8) in supplementary materials of Scornet et al. (2015) directly,

(47) |J22| ≤ C(δ)× 4(||m||∞ + α)
(
(δ + δ2)(2||m||∞ + α) + α

)
+ 2C(δ)M.

The other term J21 is

(48)

|J21| =

∣∣∣∣∣∣∣
τNn(AR,1)

σ2 (σ2 + τNn(AR,1))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i

∣∣∣∣∣∣∣

≤
∣∣∣∣ τNn(AR,1)

σ2 (σ2 + τNn(AR,1))
− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

y2i

∣∣∣∣∣∣∣ .
The bound of coefficient here is slightly different from equation (44) and (46)

(49)

∣∣∣∣ τNn(AR,1)

σ2 (σ2 + τNn(AR,1))
− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣
=

∣∣∣∣ τ(Nn(AR,1)−Nn(AL,2))

(σ2 + τNn(AR,1))(σ2 + τNn(AL,2))

∣∣∣∣
≤
∣∣∣∣ τ

(σ2 + τNn(AR,1))(σ2 + τNn(AL,2))

∣∣∣∣ (|Nn(AR,1)|+ |Nn(AL,2)|)

≤ 2τ(1−
√
δ + δ2)n(

σ2 + τ(1−
√
δ − δ2)n

)2 = g(δ, n)→ 0 when n is large.

Note that the upper bounds in equation (44) and (46) can be arbitrarily small if δ → 0, but the upper

bound in equation (49) relies on making n large. Use the tail bound of non-central χ2 distribution, result of

supplementary materials of Scornet et al. (2015), and similar to J22

(50) |J21| ≤ g(δ, n)M,

which can be arbitrarily small when n is large.

40

Now we switch to J1, corresponding to i | X(1)
i ∈ [0, x1], we proceed with similar decomposition.

(51)

J1 =
τ

σ2 (σ2 + τNn(AL,1))

1

n

Nn(AL,1)
∑

i:x
(1)
i ≤x1

y2i − (Nn(AL,1)− 1)
∑

i:x
(1)
i ≤x1

(yi − ȳAL,1
)2

− τ

σ2 (σ2 + τNn(AL,2))

1

n

Nn(AL,2)
∑

i:x
(1)
i ≤x1

y2i − (Nn(AL,2)− 1)
∑

i:x
(1)
i ≤x1

(yi − ȳAL,2
)2

=

τNn(AL,1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

y2i

+

τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2

− τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

= J11 + J12.

(52)

|J12| =

∣∣∣∣∣∣∣
τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2

− τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣

≤
∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2 − 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
+

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
− τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣ .
Same as J22,

(53)
|J12| ≤ C(δ)×

∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ∈[x1,x2]

(yi − ȳAR,1
)2

∣∣∣∣∣∣∣+ 2C(δ)M

≤ C(δ)× 5(||m||∞
√
δ + α) + 2C(δ)M.

The second equation above use result of equation (9) of supplementary material of Scornet et al. (2015).

41

Similar to J21, we have

(54)

|J11| =

∣∣∣∣∣∣∣
τNn(AL,1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

y2i

∣∣∣∣∣∣∣

≤
∣∣∣∣ τNn(AL,1)

σ2 (σ2 + τNn(AL,1))
− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

y2i

∣∣∣∣∣∣∣
≤ g(δ, n)M.

J3 have the same bound as J1. Collect all terms, we have

(55)

|J1| ≤ g(δ, n)M + C(δ)× 25(||m||∞
√
δ + α) + 2C(δ)M

|J2| ≤ g(δ, n)M + C(δ)× 4(||m||∞ + α)
(
(δ + δ2)(2||m||∞ + α) + α

)
+ 2C(δ)M

|J3| ≤ g(δ, n)M + C(δ)× 25(||m||∞
√
δ + α) + 2C(δ)M

|Ln,1(1, x1)− Ln,1(1, x2)| ≤ |J1|+ |J2|+ |J3|

.

Consequently, for all n large enough and δ small enough, we have

(56) |Ln,1(1, x1)− Ln,1(1, x2)| ≤ 3α.

42

Second case

Assume that x1, x2 ∈ AL,√δ, take same arguments as above, we have

(57) Nn(AL,1),Nn(AL,2) ≤ (
√
δ + δ2)n.

Different from the first case, now both x1 and x2 are close to the left edge, which is corresponding to term

J1. Note that |J2| and |J3| are the same as the first case since the control over region AC and AR,1 × AR,2
and not changed.

(58)

|J12| =

∣∣∣∣∣∣∣
τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2

− τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣

≤
∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2 − 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
+

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
− τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣ .
We have

(59)

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣ ≤ ∣∣∣∣ τNn(AL,2)

σ2τNn(AL,2)

∣∣∣∣ =
1

σ2

(60)

∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,2
)2 − 1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
= 2|ȳAL,1

− ȳAL,2
| × 1

n

∣∣∣∣∣∣∣
∑

i:x
(1)
i <x1

(
yi −

ȳAL,1
+ ȳAL,2

2

)∣∣∣∣∣∣∣
≤ 4(||m||∞ + α)

 (||m||∞ + α)Nn(AL,1)

n
+

1

n

∣∣∣∣∣∣∣
∑

i:x
(1)
i <x1

m(xi) + εi

∣∣∣∣∣∣∣

≤ 4(||m||∞ + α)

(
(||m||∞ + α)(

√
δ + δ2) +

Nn(AL,1)

n
(||m||∞ + α)

)
≤ 4(||m||∞ + α)

(
(||m||∞ + α+ 1)(

√
δ + δ2)

)

43

(61)

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
− τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
=

∣∣∣∣ τ(Nn(AL,2)− 1)

σ2 (σ2 + τNn(AL,2))
− τ(Nn(AL,1)− 1)

σ2 (σ2 + τNn(AL,1))

∣∣∣∣× Nn(AL,1)

n

∣∣∣∣∣∣∣
1

Nn(AL,1)

∑
i:x

(1)
i ≤x1

(yi − ȳAL,1
)2

∣∣∣∣∣∣∣
≤ 2

σ2
(
√
δ + δ2)M.

As a result

(62) |J12| ≤
1

σ2
4(||m||∞ + α)

(
(||m||∞ + α+ 1)(

√
δ + δ2)

)
+

2

σ2
(
√
δ + δ2)M → 0.

(63)

|J11| =

∣∣∣∣∣∣∣
τNn(AL,1)

σ2 (σ2 + τNn(AL,1))

 1

n

∑
i:x

(1)
i ≤x1

y2i

− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

 1

n

∑
i:x

(1)
i ≤x1

y2i

∣∣∣∣∣∣∣

≤
∣∣∣∣ τNn(AL,1)

σ2 (σ2 + τNn(AL,1))
− τNn(AL,2)

σ2 (σ2 + τNn(AL,2))

∣∣∣∣×
∣∣∣∣∣∣∣
1

n

∑
i:x

(1)
i ≤x1

y2i

∣∣∣∣∣∣∣
≤ 2

σ2
(
√
δ + δ2)M → 0.

Consequently we conclude that for all n > N and all δ small enough,

(64) |Ln,1(1, x1)− Ln,1(1, x2)| ≤ 3α.

The other cases {x1, x2 ∈ AR,
√
δ}, {x1 ∈ AL,

√
δ, x2 ∈ AC,

√
δ} and {x1 ∈ AC,

√
δ, x2 ∈ AR,

√
δ} can be

proved in the same way. Details are omitted.

44

C.2. Proof of Lemma 3 for the case k = 2. Preliminary results

Similarly, Laurent and Massart (2000) gives tail bound of χ2 distribution,

P[χ2
n ≥ 5n] ≤ exp(−n).

By the tail bound above, it’s straightforward to show that

Suppose x follows χ2 distribution with degrees of freedom k and non-central parameter λ

(65) P (x ≥ x) ≤
√
π

2e
Φ(
√
x)I k

2
(1)Mk−1,

where Iv is a modified Bessel function of the first kind, Mk−1 = E(yk−1) and y is a Gaussian (µ, 1) random

variable truncated on (
√
x,∞). So we can claim that with probability 1− ρ, the term 1

n

∑n
i=1 y

2
i is bounded.

Follow the notation of Scornet et al. (2015), let d′1 = (1, x′1) and d′2 = (2, x′2 be such that |x1 − x′1| ≤ δ

and |x2 − x′2| ≤ δ.

There exist a constant Cρ > 0 and N1 such that, with probability 1− ρ, for all n > N1,

(66) max
1≤i≤n

|εi| ≤ Cρ
√

log(n)

and

(67) max
1≤i≤n

|ε2i | ≤ C2
ρ log(n).

Fix ρ > 0, there exist N2 such that, with probability 1−ρ, for all n > N2 and all An = [a
(1)
n , b

(1)
n]×[a

(2)
n , b

(2)
n] ⊂

[0, 1]2 satisfying Nn(An) >
√
n,

(68)

∣∣∣∣∣ 1

Nn(An)

∑
i:xi∈An

εi

∣∣∣∣∣ ≤ α
and

(69)
1

Nn(An)

∑
i:xi∈An

ε2i ≤ σ̃2.

Furthermore, it’s easy to verify

(70)

∣∣∣∣∣ 1

Nn(An)

∑
i:xi∈An

yi

∣∣∣∣∣ ≤ ||m||∞ + α

and

(71)

∣∣∣∣∣ 1

Nn(An)

∑
i:xi∈An

y2i

∣∣∣∣∣ ≤ ||m||2∞ + σ̃2 + 2α||m||∞.

45

Similar to the k = 1 case, we denote partition of space as

(72)

AR,1 = [x1, 1]× [0, 1]p−1

AB,2 = [x1, 1]× [0, x2]× [0, 1]p−1

AH,2 = [x1, 1]× [x2, 1]× [0, 1]p−1

A′B,2 = [x′1, 1]× [0, x′2]× [0, 1]p−1

A′H,2 = [x′1, 1]× [x′2, 1]× [0, 1]p−1.

See Figure 4 for an illustration of notations.

0 1

1

x1 x′1

AR,1

A′R,1

x2

x′2

A′H,2

A′B,2

AH,2

AB,2

Fig 4: Illustration of notations for k = 2.

Let d1 = (1, x1), d2 = (2, x2), d′1 = (1, x′1) and d′2 = (2, x′2) be four cutpoints and |x1 − x′1| < δ,

|x2 − x′2| < δ, then

(73) Ln(d1, d2)− Ln(d′1, d
′
2) = Ln(d1, d2)− Ln(d′1, d2) + Ln(d′1, d2)− Ln(d′1, d

′
2).

46

(74)

Ln(d1, d2)− Ln(d′1, d2)

=
τ

σ2 (σ2 + τNn(AB,2))

1

Nn(AR,1)

Nn(AB,2)
∑

i:x
(2)
i ≤x2

y2i 1x
(1)
i >x1

−(Nn(AB,2)− 1)
∑

i:x
(2)
i ≤x2

(yi − ȳAB,2
)21

x
(1)
i >x1

+

τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x1

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x1

− τ

σ2
(
σ2 + τNn(A′B,2)

) 1

Nn(A′R,1)

Nn(A′B,2)
∑

i:x
(2)
i ≤x2

y2i 1x
(1)
i >x′1

−(Nn(A′B,2)− 1)
∑

i:x
(2)
i ≤x2

(yi − ȳA′B,2
)21

x
(1)
i >x′1

− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x′2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

+

γx1,x2

Nn(AR,1)
−

γx′1,x2

Nn(A′R,1)

= A1 +B1

47

(75)

A1 =
τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x1

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x1

− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x′2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

=A1,1 +A1,2 +A1,3

(76)

A1,1 =
τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x′1

− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

(77)

A1,2 =
τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x′2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

48

(78)

A1,3 =
τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i ∈[x1,x′1]

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i ∈[x1,x′1]

(79)

A1,1 =
τ

σ2 (σ2 + τNn(AH,2))

1

Nn(AR,1)

Nn(AH,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(AH,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x′1

− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

=

 τ

σ2 (σ2 + τNn(AH,2))

Nn(AH,2)

Nn(AR,1)
− τ

σ2
(
σ2 + τNn(A′H,2)

) Nn(A′H,2)

Nn(AR,1)

 ∑
i:x

(2)
i >x2

y2i 1x
(1)
i >x′1

+

 τ

σ2
(
σ2 + τNn(A′H,2)

) (Nn(A′H,2)− 1)

Nn(AR,1)

∑
i:x

(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

− τ

σ2 (σ2 + τNn(AH,2))

(Nn(AH,2)− 1)

Nn(AR,1)

∑
i:x

(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i >x′1

49

which goes to zero using the same argument as k = 1 case.

(80)

A1,2 =
τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

−(Nn(A′H,2)− 1)
∑

i:x
(2)
i >x′2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

=

 τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(AR,1)
− τ

σ2
(
σ2 + τNn(A′H,2)

) 1

Nn(A′R,1)

×

Nn(A′H,2)
∑

i:x
(2)
i >x2

y2i 1x
(1)
i >x′1

− (Nn(A′H,2)− 1)
∑

i:x
(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

(81)

|A1,2| ≤

∣∣∣∣∣∣ τNn(A′H,2)

σ2
(
σ2 + τNn(A′H,2)

) Nn(A′H,2)

Nn(AR,1)
−

τNn(A′H,2)

σ2
(
σ2 + τNn(A′H,2)

) Nn(A′H,2)

Nn(A′R,1)

∣∣∣∣∣∣
×

∣∣∣∣∣∣∣

1

Nn(A′H,2)

∑
i:x

(2)
i >x2

y2i 1x
(1)
i >x′1

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
1

Nn(A′H,2)

∑
i:x

(2)
i >x2

(yi − ȳA′H,2
)21

x
(1)
i >x′1

∣∣∣∣∣∣∣

Same as before, the second term is bounded and

(82) |A1,2| ≤M

∣∣∣∣∣Nn(A′H,2)

Nn(AR,1)
−

Nn(A′H,2)

Nn(A′R,1)

∣∣∣∣∣→ 0

(83)

|A1,3| ≤
∣∣∣∣ τ

σ2 (σ2 + τNn(AH,2))

Nn(AH,2)

Nn(AR,1)
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{

x
(2)
i > x2

})∣∣∣∣
×

∣∣∣∣∣∣∣
1

Nn

({
x
(1)
i ∈ [x1, x′1]

}
×
{

x
(2)
i > x2

}) ∑
i:x

(2)
i >x2

y2i 1x
(1)
i ∈[x1,x′1]

∣∣∣∣∣∣∣
+

∣∣∣∣ τ

σ2 (σ2 + τNn(AH,2))

Nn(AH,2)− 1

Nn(AR,1)
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{

x
(2)
i > x2

})∣∣∣∣
×

∣∣∣∣∣∣∣
1

Nn

({
x
(1)
i ∈ [x1, x′1]

}
×
{

x
(2)
i > x2

}) ∑
i:x

(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i ∈[x1,x′1]

∣∣∣∣∣∣∣
= A1,3,1 +A1,3,2.

50

Note that
τNn(AH,2)

σ2(σ2+τNn(AH,2))
is bounded by a constant M as n is large,

(84)

∣∣∣∣ τ

σ2 (σ2 + τNn(AH,2))

Nn(AH,2)

Nn(AR,1)
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{

x
(2)
i > x2

})∣∣∣∣ ≤M δ2 + δ

δ2 −
√
δ
→ 0.

So we have A1,3,1 → 0 if n is large and δ is small.

If Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{

x
(2)
i > x2

})
<
√
n,

(85)

∣∣∣∣∣∣∣
1

Nn

({
x
(1)
i ∈ [x1, x′1]

}
×
{

x
(2)
i > x2

}) ∑
l:x

(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i ∈[x1,x′1]

∣∣∣∣∣∣∣ ≤
C2
ρ log(n)
√
n

.

If Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{

x
(2)
i > x2

})
>
√
n, note that |1 − x1| ≥ ξ, Nn(AR,1) > Nn(ξ) > (ξ − δ2)n,

Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{

x
(2)
i > x2

})
≤ Nn

({
x
(1)
i ∈ [x1, x

′
1]
})
≤ (δ + δ2)n. As a result

(86)

∣∣∣∣∣∣
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{

x
(2)
i > x2

})
Nn(AR,1)

∣∣∣∣∣∣ ≤ δ − δ2

ξ + δ2
≤ δ

ξ

(87)

∣∣∣∣∣∣
Nn

({
x
(1)
i ∈ [x1, x

′
1]
}
×
{

x
(2)
i > x2

})
Nn(AR,1)

∣∣∣∣∣∣
×

∣∣∣∣∣∣∣
1

Nn

({
x
(1)
i ∈ [x1, x′1]

}
×
{

x
(2)
i > x2

}) ∑
l:x

(2)
i >x2

(yi − ȳAH,2
)21

x
(1)
i ∈[x1,x′1]

∣∣∣∣∣∣∣
≤ δ

ξ

(
3(||m||∞ + α)2 + ||m||2∞ + σ̃2 + 2||m||2∞α

)
.

Therefore A1,3,2 → 0. Collecting all bounds, we conclude that A1 → 0. It is straightforward to prove with

similar arguments that B1 → 0 and Ln(d1, d2)− Ln(d′1, d
′
2)→ 0.

51

	Introduction
	XBART Framework
	Fitting a single tree recursively and stochastically
	Forest
	Warm-start BART MCMC
	Adaptive variable importance weights
	Computational strategies
	Pre-sorting predictor variables
	Adaptive cutpoint grid
	Variable importance weights

	Tree-based models for nonlinear regression
	Model implied by the GrowFromRoot algorithm

	Theory of Consistency
	Simulation Studies
	Time-accuracy comparisons to other popular machine learning methods
	Synthetic regression data
	Results

	Warm-start BART MCMC

	Discussion
	References
	Categorical covariates
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 3 for the case k = 1
	Proof of Lemma 3 for the case k = 2

