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Bayesian Factor Model Shrinkage for Linear IV
Regression With Many Instruments
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A Bayesian approach for the many instruments problem in linear instrumental variable models is pre-
sented. The new approach has two components. First, a slice sampler is developed, which leverages a
decomposition of the likelihood function that is a Bayesian analogue to two-stage least squares. The
new sampler permits nonconjugate shrinkage priors to be implemented easily and efficiently. The new
computational approach permits a Bayesian analysis of problems that were previously infeasible due to
computational demands that scaled poorly in the number of regressors. Second, a new predictor-dependent
shrinkage prior is developed specifically for the many instruments setting. The prior is constructed based
on a factor model decomposition of the matrix of observed instruments, allowing many instruments to be
incorporated into the analysis in a robust way. Features of the new method are illustrated via a simulation
study and three empirical examples.

KEY WORDS: Bayesian econometrics; Horseshoe prior; Instrumental variables; Slice sampler.

1. INTRODUCTION

Linear instrumental variable (IV) regression is a common
method for calculating treatment effects for endogenous regres-
sors. While a single valid instrument is theoretically sufficient
to identify a treatment effect in this setting, one might hope to
increase the precision of IV estimates by including additional
instruments (both new instruments as well as interactions be-
tween, and nonlinear transformations of, existing instruments).
This strategy, in conjunction with the increasing availability of
high-dimensional data, has spurred recent interest in treatment
effect estimation procedures which use a large number of instru-
mental variables. The need for special methods in this context
is because the usual two-stage least squares (2SLS) estimator is
recognized to have nonnegligible bias when the sample size is
inadequate relative to the number of instruments (Bekker 1994;
Newey and Smith 2004).

This article proposes a Bayesian model that is tailored to the
many-instruments setting. First a factor model governing the co-
variation structure among the instrumental variables is inferred.
Based on this structure, a shrinkage prior for the first-stage re-
gression coefficients (the treatment variable as a function of the
instruments) is developed, which favors the assumption that this
common factor structure also predicts the treatment variable.
The proposed model is similar in spirit to non-Bayesian meth-
ods which regularize the first stage regression (Chamberlain and
Imbens 2004; Okui 2011; Carrasco 2012). The new approach
differs from these earlier approaches in two ways. First, a factor-
motivated shrinkage prior is used to impose the regularization.
Second, the approach is fully Bayesian, so the first and second
stage estimations mutually influence one another during joint
estimation. This shared influence can be observed concretely in
the form of the proposed slice sampler.

The body of literature on Bayesian IV is extensive and
long-established. Seminal references include Lindley and El-
Sayed (1968) and Dreze (1976). Other notable papers include
Geweke (1996), Chao and Phillips (1998), and Lopes and Polson
(2014). An excellent textbook treatments is Rossi, Allenby, and
McCulloch (2006, chap. 7). Recent work has looked at variations
on the typical Gaussian IV model, such as nonparametric error
terms (Conley et al. 2008) and violated exclusion restrictions
(Conley, Hansen, and Rossi 2012; Chan and Tobias 2014).

Despite this abundance of literature, most Bayesian IV re-
search has not focused on the many instruments setting. Three
notable exceptions are Chamberlain and Imbens (2004), Hahn
and Hansen (2011), and Koop, Leon-Gonzalez, and Strachan
(2012). Chamberlain and Imbens (2004) proposed a hierar-
chical model which serves to regularize the first-stage regres-
sion, while Hahn and Hansen (2011) revisited the problem
of prior specification in the many instruments setting and de-
velop a reparameterization that relates the use of diffuse priors
to limited information maximum likelihood (LIML) methods.
This article differs from these contributions in focusing on a
class of informative, instrument-dependent, priors. Koop, Leon-
Gonzalez, and Strachan (2012) considered instrument selection
using variable selection priors, whereas the present approach
focuses on shrinkage rather than on selection. Conceptually, the
new approach presumes (with probability one) that all of the
available instruments contribute to the first stage regression,
whereas a variable selection approach puts nonzero probability
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on the possibility that some candidate instruments are spurious
(with exactly zero first-stage coefficients).

The proposed approach also provides an a priori bias that
directions of shared covariation among the instruments are more
likely to explain the observed treatment. As such, this article
complements recent non-Bayesian work considering the use
of factor models in the many instruments context (Groen and
Kapetanios 2009; Ng and Bai 2009; Kapetanios and Marcellino
2010). The new approach differs from these earlier uses of factor
models in two important respects. First, the bias is provided via
a shrinkage prior, rather than via a direct dimension reduction
step, bypassing a separate factor selection step. Second, the
factor modeling ideas utilized here are based on a factor model
that permits additive idiosyncratic errors, as distinct from factor
models which simply rotate the instrument matrix (e.g., singular
value decompositions). See Section 3.2 for further details on this
distinction.

The rest of the article is organized as follows. Section 2
reviews the Bayesian IV model and presents a slice sampler for
use with general shrinkage priors. Section 3 introduces the new
factor shrinkage prior. Section 4 reports on simulation studies
and Section 5 demonstrates the new method on empirical data.

2. “TWO-STAGE” BAYESIAN IV

This section describes a reparametrization of the usual
Gaussian instrumental variables (IV) model. Building on this
representation, a slice sampler is developed, which facilitates
the use of nonconjugate shrinkage priors for the instrument co-
efficients.

2.1 A Reparameterization of Bayesian Linear IV

The starting point of Bayesian approaches to endogenous
regressors is the structural equation model

yi = βxi + εyi
xi = ztiδ + εxi , (1)

where (εx, εy) are jointly Gaussian with mean zero and
covariance

cov

(
εx
εy

)
:= S =

(
σ 2
x σxy

σyx σ
2
y

)
.

The variable xi is referred to as the treatment variable, yi is the
response variable and zi is a vector of instruments. The unknown
parameters in this model are β, δ, σ 2

x , σ 2
y , and σxy = σyx ; the

parameter of interest is β. Because of the implied covariance
between xi and εy , valid estimates of β cannot be obtained from
just a regression of yi onto xi .

The joint distribution of the observables can be found by
substitution

xi = ztiδ + εxi ,
yi = ztiδβ + βεxi + εyi . (2)

A further reparameterization yields

xi = ztiδ + νxi ,
yi = ztiδβ + νyi , (3)

with

cov

(
νx
νy

)
= � = TSTt ,

where T = ( 1 0
β 1 ) .

Equation (3) is referred to as the “reduced form” equations,
in contrast to (1), the “structural” equations.

The focus in this article will be on priors for δ when the
number of instruments p is large relative to the number of
available observations n. Priors over the remaining parameters
are determined by a factorization of the likelihood based on
εy | εx ∼ N(αεx, ξ 2), where

α = σy

σx
ρ; ξ 2 = (1− ρ2)σ 2

y , (4)

with ρ ≡ σxy
σxσy

. The matrix � can be written in terms of β, α,

ξ 2, and σ 2
x ,

� =
(
σ 2
x (β + α)σ 2

x

(β + α)σ 2
x (β + α)2σ 2

x + ξ 2

)
, (5)

which in turn corresponds to the following factorization of the
joint likelihood over observables (x, y):

f (x, y | z) = f (y | x, z)f (x | z)

= Ny|x(xβ + α(x − ztδ), ξ 2)

×Nx

(
ztδ, σ 2

x

)
. (6)

The appearance of δ in both factors on the right-hand side means
that observations of (yi, zi) allow one to disentangle β and α.
It is conceivable, of course, that in a given applied problem one
instead has

f (x, y | z) = f (y | x, z)f (x | z)

= Ny|x(xβ + α(x − ztδ), ξ 2)Nx(ztδ∗, σ 2
x ), (7)

with δ∗ �= δ. The assumption that δ∗ = δ is referred to as the
instrument exclusion restriction and in general is untestable.
See Conley, Hansen, and Rossi (2012) and Chan and Tobias
(2014) for approaches which weaken this assumption, yielding
only partial identification of β. In this article, the exclusion
restriction will be assumed.

2.2 A Slice Sampler for Bayesian IV With Arbitrary
Shrinkage Priors

In this section, a computational strategy for sampling from
Bayesian IV models is described. This strategy, which builds
upon the elliptical slice sampler of Murray, Adams, and MacKay
(2009), confers two advantages over standard approaches. First,
the new strategy allows for jointly sampling the vector of coef-
ficients in the IV model above, even when shrinkage priors are
used for δ. Common approaches for implementing shrinkage
priors in Bayesian regression models employ a Gibbs sampling
strategy that requires looping over each regression coefficient in
turn (Carvalho, Polson, and Scott 2009). When the number of
instruments is large, this Gibbs sampling approach is computa-
tionally demanding simply because every Monte Carlo iteration
requires a length p loop over the variables. Second, the sampler
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described here can be applied with arbitrary shrinkage priors, as
long as the joint prior density over the coefficients can be evalu-
ated. This property will allow us to incorporate factor structure
into our prior relatively easily via a structured prior over δ (see
Section 3.1). By comparison, fitting a full Bayesian factor model
typically requires drawing latent factor scores, an approach that
scales poorly in the sample size, n. The slice sampler described
below can be described in terms of sufficient statistics of the
linear regression model, allowing large samples to be analyzed
with no additional computational cost.

Murray, Adams, and MacKay (2009) developed an algorithm
for sampling from posteriors proportional to f (y | δ)π (δ) when
π (δ) is Gaussian; that is, they advertise their algorithm as apply-
ing to the case of arbitrary likelihood and Gaussian prior. In the
present case, it is desired to sample from a posterior proportional
to f (x | δ, σ 2

x )f (y | x, δ, α, β, ξ 2)π (δ) where f (x | δ, σ 2
x ) is a

Gaussian likelihood (as described in the previous section). Let-
ting π (δ | x,Z, σ 2

x ) denote the Gaussian posterior for δ under a
flat prior, and integrating α, β, and ξ 2 from the model a priori
yields

π
(
δ | σ 2

x , x, y,Z
) ∝ π (δ, σ 2

x | x,Z
)
f (y | x,Z, δ)π (δ), (8)

for arbitrary π (δ). Therefore, one can directly apply the al-
gorithm of Murray, Adams, and MacKay (2009), using π (δ |
x,Z, σ 2

x ) in place of their Gaussian prior and using f (y |
x,Z, δ)π (δ) in place of their likelihood.

In this article, a normal-inverse-Gamma prior is used for
(α, β, ξ 2), with prior mean E(α) = E(β) = 0, covariance of
diag((c−1

β , c
−1
α )t ), and Gamma shape parameter of s/2 and

scale parameter of κ/2. Define x̃i := (xi, xi − ztiδ). Let M =
diag((cβ, cα)t )+ x̃t x̃, b = s + yty− yt x̃M−1x̃ty, and a = n+
κ . Note that x̃, M, a, and b depend implicitly on δ; then
f (y | x,Z, δ) ∝ det(M)−

1
2 b−

a
2 , which is the kernel of a mul-

tivariate t-distribution. For the time being, the algorithm is de-
scribed in terms of a generic prior π (δ); Section 3 describes the
new factor shrinkage prior.

With these definitions, the slice sampler can be described as
follows (for fixed σ 2

x ). Let δ̂ = (ZZt )−1Zx and for an initial
value of δ, define � := δ − δ̂.

Elliptical slice sampler for Bayesian IV

1. Draw ζ ∼ N(0, σ 2
x (ZZt )−1).

2. For υ ∼ Uniform(0, 1) define � := log (f (y | x,Z, δ))+
log (π (δ))+ log (υ).

3. Draw angle ϕ ∼ Uniform(0, 2π ); set lower ← ϕ − 2π and
upper ← ϕ.

4. Set �′ ← � cosϕ + ζ sinϕ and δ′ ← δ̂ +�′ .
5. while log (f (y | x,Z, δ′))+ log (π (δ′)) < �

(a) if ϕ < 0, set lower ← ϕ, else set upper ← ϕ.
(b) Draw angle ϕ ∼ Uniform(lower, upper)
(c) Update �′ ← � cosϕ + ζ sinϕ and δ′ ← δ̂ +�′.

6. Set �← �′ and δ← δ̂ +�′.
See Murray, Adams, and MacKay (2009) for a proof that this

algorithm has the desired stationary distribution. Note that this
sampler requires the ability to evaluate the (possibly unnormal-
ized) prior density π (δ). Sampling the univariate parameter σ 2

x

can be done in between taking samples of δ, using either a con-
ditionally conjugate inverse-gamma prior (which includes a flat

prior as a limiting case) or an arbitrary prior in conjunction with
a Metropolis-Hastings step.

Finally, given samples of δ, draw samples (α, β, ξ 2) from
π (α, β, ξ 2 | x,Z, y, δ), which is a conjugate Gaussian regres-
sion with predictor vector x̃. More specifically, draw ξ 2 from
an inverse-Gamma distribution with shape parameter b/2 and
scale parameter a/2, then draw (α, β) as a vector with mean
M−1x̃ty and covariance ξ 2M−1.

3. A FACTOR-BASED SHRINKAGE PRIOR

If it were possible to extract latent factors governing the cor-
relation structure in a vector of instruments, one might suppose
that these factors would make “strong” instruments. This is sim-
ply the usual factor regression rationale, applied to the treatment
equation in an instrumental variable analysis.

It is worth distinguishing how this factor regression prior
assumption differs from a variable selection prior. Instead of
presuming one has only a few good instruments among a whole
batch of candidate instruments and that one simply does not
know which ones they are, it is instead supposed that each avail-
able instrument may itself be weak, but that there exists a linear
combination of them that is, taken together, much stronger. In
this section, it is described how this intuition can be incorporated
into a prior distribution over δ.

To begin, suppose the covariance of the instruments decom-
poses as

cov(zi) = BBt +�2, (9)

where B is a p-by-k matrix with and �2 is diagonal with non-
negative elements. Any covariance matrix admits such a decom-
position, but present interest is in the case where k 	 p; see the
following section for additional details.

Next, consider the factor regression model

xi = θ f̂i + εi, (10)

where f̂i = E(fi | zi ,B) = Bt (BBt +�2)−1zi = Azi . This ex-
pression follows by positing a joint Gaussian distribution be-
tween k-by-1 latent factors f and instrument vector z, with cross
covariance B and marginal covariance cov(f) = Ik . This model
encodes the assumption that the conditional mean of x lies in
the same subspace as the directions of common covariation in
z. By substitution, it is seen that δ can be written as δt = θA.

If δ does not actually lie in the row space of A, the model
has a misspecified support, which can dramatically degrade in-
ference. To accommodate this possibility, consider instead the
overparameterized factor model

xi = θ f̂i + ηr̂i + εi, (11)

where r̂i = zi − A†Azi and † denotes the Moore-Penrose
pseudo-inverse of a matrix. Such models, referred to as “partial
factor models” (Hahn, Carvalho, and Mukherjee 2013), entail
that

δt = θA+ η(I− A†A). (12)

With this formulation, a prior over δ can be induced by placing
priors over δ̃t ≡ (θ , η). More specifically, a strong shrinkage
prior over the p + k regression coefficients comprising δ̃ em-
beds the prior bias that the derived factors f̂i are likely to play
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a strong role in determining the conditional mean of the treat-
ment. Meanwhile, the prior still gives δ full support in R

p; θ

constitutes the part of δ that lies in the row space of A, while η

constitutes the part lying in the corresponding orthogonal com-
plement. Observe also that sparsity in the overparameterized δ̃

basis (in the sense of a few very large coefficients and many
more nearly zero ones) does not in general result in a sparse δ

vector.

3.1 A Latent Variable Specification

One obvious approach to incorporating a bias toward fac-
tor structure would be to sample δ̃ directly. However, this ap-
proach proves to be inefficient precisely because δ̃ is uniden-
tified; exploring the corresponding multimodal posterior can
require many Monte Carlo iterations. Instead, one can leverage
results from the theory of pseudoinverses to specify a prior that
permits drawing posterior samples of δ directly, while still im-
posing the sparsity penalty in the δ̃ partial factor representation.

First, note that δ = Hδ̃, where

Ht =
(

A
I− A†A

)
.

Therefore, by the theory of pseudoinverses, δ̃ = H†δ + (I−
H†H)ω for any (p + k)-dimensional real vector ω. Using this
identity, conditional on ω, it is possible to evaluate the density

π (δ | ω) =
p+k∏
j=1

{
(2π )−

3
2 log

(
1+ 4/δ̃2

j

)}
.

This choice of prior density in δ̃ space is motivated by an analytic
approximation of the so-called horseshoe prior; see Carvalho,
Polson, and Scott (2010) for details and operating characteristics
of this prior. Figure 1 depicts this prior for a single coefficient.
The specification is completed with independent standard nor-
mal priors over the elements ofω, which is convenient, maintains
the full support, and is demonstrated to work well in simulation
studies.

However, observing that (I−H†H) has rank k and is idempo-
tent, it follows that for UUt = (I−H†H) with U a (p + k)-by-k

-10 -5 0 5 10

0
2

4
6

8

Coefficient

D
en

si
ty

Figure 1. In the overparameterized space the individual coefficients
have a prior with a pole at the origin and polynomial tails.

matrix, the prior may be specified via δ̃ = H†δ + Uw, where
w is a k dimensional vector, also with a standard normal prior.
Putting these pieces together, the factor shrinkage prior can be
expressed as

π (δ) =
∫
π (δ | w)φ(w)dw,

= h
∫ ∏

j

log

(
1+ 4

δ̃2
j

)
φ(w)dw,

δ̃ = H†δ + Uw, (13)

where h is a normalizing constant and φ(·) denotes the (mul-
tivariate, independent) standard normal density function. To
implement this prior, one alternately samples from w and δ,
using the slice sampler previously described. Note that w ap-
pears in π (δ | w) as a location parameter, and so does not ap-
pear in its normalizing constant (and vice-versa, interchang-
ing the roles of δ and w), which allows the algorithm to
proceed using only evaluations of

∏
j log (1+ 4

δ̃2
j

). Finally,

one may incorporate a global scale parameter v, with prior
π (δ | w, v) ∝ v−p−k∏j log (1+ 4

(δ̃j /v)2 ), where v is sampled
via a Metropolis-Hastings step.

In practice, of course, B and �2 are unknown and must be
estimated in some fashion. Although a natural option would be
to infer these parameters hierarchically, here plug-in point esti-
mates are recommended. The reason to avoid a Bayesian model
for the instrument vector is mainly computational; current factor
model sampling algorithms scale poorly in n. Additionally, it is
often the case that instruments are not continuous, which sub-
stantially complicates the factor modeling (Murray et al., 2013).
The concrete form of the suggested empirical plug-in estimate
of B and � is the topic of the next section.

3.2 The Frisch Decomposition

The notion of “shared factors” among vectors of measure-
ments can be characterized in terms of an optimization problem
motivated by the early work of Ragnar Frisch on “confluence
analysis” (Frisch 1934). Specifically, given a covariance matrix
�, consider the following rank minimization problem:

minD rank(� − D)

s.t. D diagonal,

� − D ≥ 0. (14)

If D∗ is a solution to (14), denote a matrix pair (�2,B) a Frisch
decomposition of �, if

�2 = D∗; BBt = � − D∗. (15)

By assuming � known, this problem is nonstatistical in na-
ture, yet it readily captures an intuition about what makes factor
models appealing as descriptions of data. Factor models are pop-
ular not merely because they decompose covariance structure
into a common component and an independent (diagonal) com-
ponent, but because it is anticipated that this decomposition can
be done parsimoniously. Indeed, any p-by-p covariance matrix
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Figure 2. An illustration of how the eigenvalues of a full covariance
matrix � can be flatter than the eigenvalues of the trace-heuristic de-
rived loadings matrix � − D∗. This occurs when � has an underlying
factor structure with relatively large idiosyncratic variances.

has a p − 1 dimensional factor representation (let �2 = ιpI for
ιp the smallest eigenvalue of the singular-value decomposition),
whereas the Frisch decomposition demands that one find the
most concise of all such descriptions.

Although solving (14) exactly is quite difficult, high quality
approximations are available using a surrogate objective func-
tion based on the matrix trace (Fazel 2002):

minD trace(� − D)

s.t. D diagonal,

� − D ≥ 0. (16)

The trace approximation is convex and can be routinely
solved by readily available software (Grant and Boyd 2013,
2008). The specifics of this approximation are beyond the scope
of this article; see Ning et al. (2015) for an excellent overview
with many references. The trace approximation serves to extract
a “sharper” set of eigenvectors, in the sense of having a more
rapidly decaying set of eigenvalues, as seen in Figure 2, which
overlays the eigenvalues of an example covariance matrix � and
� − D∗, where D∗ solves (16). In this sense, the trace heuristic
still isolates “communalities.” Henceforth, whenever a Frisch
decomposition is referred to, it is to be understood that it is
computed approximately using the feasible trace formulation in
(16).

With D∗ in hand, it remains to factor � − D∗ = BBt . Any fac-
torization will do; here a routine singular value decomposition
will be used. Note that many empirical factor models implicitly
take D to be the zero matrix.

Finally, note two additional details concerning the imple-
mented Frisch decomposition. First, the solution to (14) is in-
variant to row and column scaling operations, while (16) is
not. This observation has motivated weighted minimum trace
approximations that attempt to define and compute an optimal
weight matrix (Shapiro 1982; Ning et al. 2015). As a crude
heuristic, the approach taken here is to solve (16) applied to the
sample correlation matrix as opposed to the sample covariance
matrix.

Similarly, because � is only known up to an empirical esti-
mate, the actual rank of B will tend not to be reduced, regardless

of whether there is true underlying factor structure or not. Ac-
cordingly, H may be defined by approximating B by its first few
dominant eigenvectors. Various heuristics can be used based
on inspection of the eigenvalues of B. Our preferred heuristic,
which is observed to work well empirically, is to truncate at the
point of largest ratio between consecutive eigenvalues up to a
prespecified maximum kmax 	 p.

The choice of how to determine k can be thought of as a
definition of the prior being used. The factor shrinkage prior is
meant to encode the idea that directions of strong covariation
among the instruments are likely to be good predictors of the
treatment variable. Specifying a heuristic method for selecting
k serves as a formalization of what it means to be a “strong
direction of covariation.” At the same time, it is important to
bear in mind that the implied prior for δ still has full support,
so “misspecification” of the prior in the sense of sub-optimally
selecting k is not as damaging to posterior inferences as in the
usual factor regression context.

4. SIMULATION STUDY

Simulation studies reveal that, when exploitable factor struc-
ture is evident among the instruments, the factor shrinkage prior
(FSP)—based on an approximate Frisch decomposition of an
estimated covariance matrix—delivers more precise inferences
than a model using a shrinkage prior on δ that is not dependent
on Z. Despite using empirically estimated information about the
factor structure, incorporating this information into the shrink-
age prior yields better inferences concerning δ, which translates
to better inferences concerning the treatment effect coefficent,
β—specifically, shorter posterior credible intervals (with com-
parable coverage rates) and smaller mean squared error.

Naturally, in any Bayesian simulation the performance is ulti-
mately dictated by how closely the prior used to simulate the data
matches the prior used in the model, which, at a high level, is an
unilluminating finding. However, in the factor shrinkage model,
the data-dependence adds an additional degree of freedom. The
goal of the simulation study reported here is to describe the
relationship between the instrument matrix and the underly-
ing parameters and to understand in what situations the factor
shrinkage model is anticipated to outperform a data-independent
shrinkage prior.

First, in extensive simulation studies not reported here, it was
determined that the qualitative behavior of the factor shrinkage
prior mimics the behavior of the partial factor model described
by Hahn, Carvalho, and Mukherjee (2013). That is, when there
is strong factor structure, the factor shrinkage model performs
on par with a factor model that explicitly models the instru-
ment matrix (in terms of mean squared estimation error). When
there is no strong factor structure, the factor shrinkage model
performs on par with a direct shrinkage prior (canonically, the
horseshoe prior of Carvalho, Polson, and Scott 2010). Modest
deterioration is observed due to the empirical approximation,
meaning that generally speaking the factor shrinkage prior per-
formed somewhere in between the full factor model and the pure
shrinkage prior in all regimes, usually closer to the better of the
two. The purpose of the present investigation is to determine
if this improved estimation translates to improved inferences
regarding β.
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There are two aspects to consider when it comes simulating
factor structure. The first aspect is whether or not the instrument
matrix exhibits strong patterns of correlation and whether or
not that pattern can be expressed in Frisch form with k 	 p.
The second aspect is whether or not the treatment variable de-
pends on these same patterns of dependence exhibited by the
instrument matrix. Here only the second issue is considered.
For this simulation study it will be assumed that the matrix of
instruments possesses factor structure, and the simulation study
reports how the factor shrinkage model performs as one varies
the strength of dependence between these factors and the treat-
ment variable. The basic data-generating process is as follows.
For n = 200, p = 20, and k = 3,

zi ∼ N(0,BB′ +�2),

xi = ztiδ + σxεx|z;i ,

yi = βxi + α
(
xi − ztiδ

)+ ξεy|z,x;i , (17)

where all error terms (the ε’s) are independent standard nor-
mal. Parameters β and α are drawn independently from normal
inverse-gamma distributions with precision parameters 1 and
1/2, respectively, and common shape parameters κ/2 = 16 and
scale parameter s/2 = 4.

In preliminary simulations, two conditions that confer an ad-
vantage to the factor shrinkage model were determined. First,
the factor shrinkage model will not outperform a straight shrink-
age prior if there is ample data to estimate δ without the prior
having any noticeable influence. In terms of model parameters,
this means that σx and ξ cannot be too small, otherwise the prob-
lem is “easy” and the two priors (indeed, any sensible prior) will
perform comparably. Second, there must be a sufficient sample
size to estimate �, and hence B, reasonably well. Although �

is a p-by-p matrix, the assumption of factor structure suggests
that estimation is possible with fewer observations than if there
were no factor structure because the “intrinsic dimension” is
smaller than p, although some amount of regularization may be
beneficial (Aswani, Bickel, and Tomlin 2011). Intuitively, the
factor shrinkage model is most useful when (1) the prior mat-
ters and (2) the prior information used is good. Practically, this
means that one should trust that � has been estimated reason-
ably well before proceeding with this prior. One case where this
is sensible is when there are observations of z, without the asso-
ciated x and y observations, that can improve estimation of � for
the purpose of prior specification (a setting sometimes referred
to as semisupervised learning (Belkin, Niyogi, and Sindhwani
2006)). In this simulation study these conditions are assured by
generating B, �2, δ, σx and ξ as follows.

• Each of the k columns of B is drawn uniformly on the
unit hypersphere. The columns of B are not forced to be
orthogonal.
• Each ψj , j = 1, . . . , p, is drawn uniformly on [2, 4]. In

words, the standard deviation of the idiosyncratic errors
in each dimension of zi are between two and four times
as big as the “signal” due to the factor loadings in the
corresponding row. This is important because if the factors
associate too strongly with any single instrument, then that
instrument alone will be sufficient to accurately estimate

Table 1. Simulation results based on 500 simulated datasets

HS FSP

a ARIL (RMSE, coverage) (RMSE, coverage)

100% 87.0% 0.37, 91.6% 0.32, 91.0%
90% 89.6% 0.38, 91.4% 0.36, 91.0%
80% 91.5% 0.38, 90.8% 0.38, 88.2%
70% 94.3% 0.34, 93.4% 0.32, 91.4%
60% 95.8% 0.40, 88.6% 0.39, 88.4%
50% 97.3% 0.37, 87.4% 0.35, 88.6%

NOTE: The parameter a denotes what proportion of ||δ||22 is due to the part of δ that lies in
the factor regression subspace of z. A factor shrinkage prior (FSP) is compared to a straight
shrinkage (“horseshoe,” HS) prior in terms of the average ratio of interval lengths (ARIL)
for a nominal 90% credible interval, the corresponding coverage, and the root mean squared
estimation error (RMSE).

the conditional expectation of the treatment and no benefit
is gained from the factor prior.
• Define A := Bt (BBt +�2)−1, δf := θ tA, and δf̄ :=

η(I− AA†). Draw θ (k-by-1) and η (p-by-1) independently
from unit hyperspheres. Then

δ = √aδf +
√

1− aδf̄ .
This construction decomposes δ into a part in the factor
space and a part in the orthogonal complement, with a
defining the proportion of the total variance attributable to
the factor component.
• Finally, to determine sensible noise levels, define d2 :=

δt (BBt +�2)δ and q2 = (β2(1+ s2
x )+ s2

xα
2)d2. These

terms represent the variation in x attributable to z and the
variation in y attributable to x and z, respectively. Then,
define σx = sxd and ξ = syq, so that sx and sy control the
signal-to-noise ratio in the two regression equations. Here,
sx = sy = 2.

We compare the factor shrinkage prior to a straight horse-
shoe prior. Priors over (β, α) are the same for both models and
are set to the true normal-inverse-gamma data-generating prior
mentioned above. The simulation results, based on 500 simu-
lated datasets at each value of a, are reported in Table 1. As
expected, the model performs best (in the sense of having the
smallest interval length ratio) when the data-generating process
is a pure factor regression model (a = 100%). However, the
factor shrinkage prior performs well even when a = 50%, indi-
cating that a full half of the treatment regression “signal” comes
from outside the factor regression model.

5. EMPIRICAL APPLICATIONS

This section demonstrates the factor shrinkage prior (FSP)
method on three empirical applications, which have all been
studied in the previous literature. The goal in these demonstra-
tions is not a thorough stand-alone economic analysis, but rather
a direct comparison with previously reported results on a variety
of datasets. Special attention is paid to computational hurdles
encountered with each dataset.

Each of the three datasets has features which illustrate dif-
ferent aspects of the many instruments problem as it manifests
in applied work. The first example is a relatively tractable ap-
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plication, with 23 exogenous controls, 48 instruments and 2217
observations. The elasticity of inter-temporal substitution exam-
ple, from Yogo (2004), is rather more difficult, with 59 instru-
ments for a mere 114 observations (and no additional controls).
This example uses instruments that are numerical (as opposed
to categorical or dummy instruments). Finally, the returns to
schooling example has 180 instruments as well as many con-
trols (509), and over 300,000 observations. This dataset has
many dummy instruments, and it is observed that the factor
shrinkage method works as expected despite the fact that fitting
a factor model to the instruments themselves is infeasible with
such a large sample size (using currently available factor model
sampling algorithms).

To aid in direct comparison with the earlier analysis, exoge-
nous covariates are incorporated by “partialing them out” via an
initial application of ordinary least squares to both the treatment
and response equations, with the Bayesian model then being
applied to the resulting residuals. It is described in an appendix
how one could instead include the variables directly into the
model; arguably such an approach is sounder from a Bayesian
perspective.

In all cases, priors are specified in terms of standardized
response and treatment variables and then transformed to the
original scale by post-processing posterior samples.

5.1 Automobile Data

Berry, Levinsohn, and Pakes (1995) performed a detailed
regression analysis to infer the demand for automobiles. Here
the same data is used, although the reanalysis of Chernozhukov,
Hansen, and Spindler (2015) is followed for comparison.

For reference, the model being fit is as in (A.1): f (x, y | z) =
Ny|x(xβ + α(x − ztδz − vtδv), ξ 2)Nx(ztδ + vtγ , σ 2

x ), for yht =
log (sht )− log (s0t ), with sit denoting the market share of prod-
uct h in market t and product 0 denoting the “outside option.”
(Note that the double subscripts, product h and market t, are im-
material once the response variable and instruments have been
formed; the usual panel regression model is obtained by rein-
dexing with single subscript i.)

The treatment variable xht is the corresponding product price
and vht are additional product characteristics: air condition-
ing (AC), horsepower to weight ratio (HWR), miles per dollar
(MPD), and vehicle size (VS). Following Berry, Levinsohn, and
Pakes (1995), the instrument vector, zht , is constructed by cal-
culating the following:

• the sum of each characteristic in v, taken across models
made by product h’s firm,
• the sum of each characteristic in v, taken across competitor

firms’ products,
• the total number of models produced by product h’s firm,

and
• the total number of models produced by the firm’s com-

petitors.

Thus, with four attributes included in v, there are a total of
10 basic instruments. Following Chernozhukov, Hansen, and
Spindler (2015), the model is augmented with the covariate
vector v to include a time trend and quadratic and cubic terms in

Table 2. Estimates of the elasticity of inter-temporal substitution
using the direct regression (ψ := β), by various methods: ordinary
least squares (OLS), two-stage least squares (2SLS), Bayesian IV

with factor shrinkage prior (FSP) or unmodified horseshoe prior (HS
IV), and the boosted factor IV of Ng and Bai (2009), Table 7b (FIVb)

Method β̂ s.d.

OLS 0.12 0.05
2SLS (all) 0.12 0.07
HS IV (all) 0.10 0.07
2SLS (Yogo) 0.06 0.09
HS IV (Yogo) 0.05 0.09
FSP (2 factors) 0.08 0.07
FIVb (Ng and Bai) 0.09 0.06

NOTE: Yogo’s original four instruments appear in all models. For all FSP and HS models,
the hyper-parameters for (β, α) are κ = 8, s = 2, cβ = 4, and cα = 1. All figures have been
rounded to two decimal places for comparison.

all continuous characteristics (everything except AC, including
the time trend), as well as all first-order interaction terms. This
yields a total of 23 additional covariates. Using this expanded
covariate vector, the instrument vector z is constructed according
to the procedure described above, yielding 48 total instruments.

The most notable challenge of the automobile data is that the
covariance matrix is nearly singular, so the inversion needed by
the factor shrinkage prior is ill-defined. Accordingly, a prereg-
ularized covariance estimate is used, obtained using the Con-
dReg package in R (Oh, Rajaratnam, and Won 2015) and de-
termining the amount of regularization by cross-validation.

Using the largest ratio between consecutive eigenvalues less
than kmax = 10 chooses 2 factors. With moderately informative
values (κ = 8, s = 2, cβ = 4, cα = 1) one obtains a point esti-
mate of β̄ = −0.275 (with standard deviation of 0.018), which
is somewhat larger in magnitude than the estimate of −0.22 re-
ported by Chernozhukov, Hansen, and Spindler (2015). Results
are not sensitive to moderate variation in prior parameters.

5.2 The Elasticity of Intertemporal Substitution

Yogo (2004) considered estimating the elasticity of inter-
temporal substitution (EIS) via a linearization of the Euler equa-
tion, using macroeconomic data and an instrumental variable
analysis. Ng and Bai (2009) extended this analysis by incor-
porating many additional macro variables (detailed by Ludvig-
son and Ng (2007)) as instruments and consolidating them into
factors using a boosting approach. This section mimics that
analysis for comparative purposes, focusing on the 1970:3 to
1998:4 quarterly data for the United States (n = 114). Of the
209 macrovariables used as instruments in Ng and Bai (2009), a
subset of 78 are used here1. This number of instruments is then
further reduced to 55 by dropping one of each pair of variables
with correlation greater than 0.9, to lessen numerical instability
due to extreme multicolinearity (many of these series are essen-

1A complete dataset was not readily available. For the purposes of illustration,
the distinction between 78 instruments and 209 instruments is minor; having
strictly fewer instruments than earlier analyses is not essential to the model
interpretation and comparison in the way that having the same control variables
is.
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Table 3. Posterior mean estimates of β across a range of hyperparameter values

cα

cβ 0.1 1 2 5 10

0.1 0.073 (0.075) 0.082 (0.072) 0.074 (0.077) 0.074 (0.074) 0.087 (0.078)
1 0.070 (0.076) 0.075 (0.072) 0.073 (0.073) 0.073 (0.070) 0.086 (0.066)
2 0.059 (0.075) 0.079 (0.074) 0.066 (0.071) 0.073 (0.071) 0.086 (0.066)
5 0.062 (0.073) 0.062 (0.070) 0.065 (0.075) 0.074 (0.065) 0.076 (0.065)
10 0.061 (0.069) 0.074 (0.064) 0.058 (0.070) 0.066 (0.064) 0.075 (0.059)

Table 4. Posterior mean estimates of α across a range of hyperparameter values

cα

cβ 0.1 1 2 5 10

0.1 0.101 (0.125) 0.093 (0.124) 0.105 (0.135) 0.098 (0.120) 0.065 (0.125)
1 0.106 (0.128) 0.100 (0.122) 0.104 (0.124) 0.101 (0.109) 0.075 (0.102)
2 0.131 (0.125) 0.087 (0.133) 0.117 (0.119) 0.096 (0.113) 0.069 (0.102)
5 0.121 (0.127) 0.125 (0.120) 0.111 (0.126) 0.091 (0.100) 0.088 (0.099)
10 0.122 (0.126) 0.097 (0.117) 0.122 (0.118) 0.102 (0.105) 0.086 (0.091)

tially identical). A representative subset of these macrovariables
includes, for example, gross domestic purchases, fixed invest-
ment in durable equipment, assets abroad, and net exports2. In-
cluding Yogo’s original four instruments (twice lagged nominal
interest rate, inflation, consumption growth, and log dividend-
price ratio), the model uses 59 total instruments. Unlike the
automobile data or the returns to schooling data in the next ex-
ample, the analyses of Yogo (2004) and Ng and Bai (2009) do
not include exogenous controls.

For reference, the model being fit is as in (6): f (x, y | z) =
Ny|x(xβ + α(x − ztδ), ξ 2)Nx(ztδ, σ 2

x ), where yi is the quarterly
consumption growth (i.e., the change in consumption) in the
United States, xi is the real interest rate and β denotes the
elasticity of intertemporal substitution (EIS). The instrument
vector zi consists of aforementioned macroeconomic indicators
(twice lagged), in addition to the original instruments used by
Yogo (2004): twice lagged nominal interest rate, inflation, con-
sumption growth, and log dividend-price ratio. See Yogo (2004)
section II for a theoretical justification of this model.

Table 2 compares the estimates and standard errors/posterior
uncertainty for various estimation methods. Straight shrinkage
regularization with the larger set of instruments gives an answer
somewhat smaller (0.10) than the corresponding OLS estimate
(0.12) with similar standard deviation (0.07). The factor shrink-
age prior with prior κ = 8, s = 2, cβ = 4, and cα = 1 gives a
posterior mean that is smaller yet (0.08) with similar posterior

2It is a practically relevant question as to whether or not (lagged) macroe-
conomic indicators serve as valid instruments in the sense of satisfying the
exclusion restriction. On the one hand, under a causal interpretation it seems
reasonable to assert that past indicators should only relate to the present econ-
omy via the more recent indicators—a sort of Markov property. On the other
hand, this narrative falls apart when one considers latent common causes that
serve to induce dependence between today’s indicators, yesterday’s indicators,
and today’s response variable. Such shared common causes clearly violate the
desired exclusion restriction. That said, this possibility will not be discussed
further here; rather, a narrow comparison is drawn with the results of Ng and
Bai (2009), who assumed the validity of the macro indicators as instruments.
As such, a detailed justification of these instruments is beyond the scope of the
present illustration.

standard deviation (0.07). Note that the factor shrinkage result
is only slightly smaller than the estimate of Ng and Bai (2009)
(0.09), with a somewhat higher standard deviation (0.07 versus
0.06).

For these data, least squares regression gives an R2 of only
about 0.05 (with p = 59 and n = 114) and a corresponding
sensitivity to choice of prior is observed. Through extensive in-
vestigation it was ascertained that the dominant prior impact is
determined by the relative size of cβ and cα; these parameters
govern the a priori decomposition of the reduced form coef-
ficient (α + β) into its constituent (economically interpretable)
pieces. Table 3 records how the posterior mean estimate changes
as a function of cβ and cα (the prior precision parameters). No-
tice that across this wide range of prior parameter values, the
posterior estimate of β varies between the original estimate of
Yogo (2004) (0.06) and the factor selected estimate of Ng and
Bai (2009) (0.09). For no prior values does the estimate get any
closer to the 2SLS (and OLS) estimate of 0.12.

Tables 4 shows the corresponding table for α. Table 5 shows
the corresponding posterior mean of α + β.

Notably, the Yogo data prove to be extremely computation-
ally demanding, probably owing to multimodality in the poste-
rior for δ, which is a well-known result of fat-tailed priors used
in conjunction with information-poor data. It took a staggering
50 million iterations before posterior mean estimates stabilized.
The other two datasets did not require such heroic efforts, prob-

Table 5. Posterior mean estimates of α + β across a range of
hyperparameter values

cα

cβ 0.1 1 2 5 10

0.1 0.174 0.175 0.179 0.172 0.152
1 0.176 0.175 0.177 0.174 0.161
2 0.190 0.166 0.183 0.169 0.155
5 0.183 0.189 0.176 0.165 0.164
10 0.183 0.171 0.180 0.168 0.161
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Table 6. A factor shrinkage analysis (k = 2 factors) of the returns to schooling data produce estimates similar to those from other
regularization methods for treatment effects. Table reproduced from Hansen and Kozbur (2014)

2SLS Post-LASSO JIVE RJIVE FSP

A. 3 instruments
Schooling coefficient 0.1079 0.115 0.1091 0.1091 0.1098
Estimated standard error 0.0196 0.0205 0.0202 0.0202 0.0207

B. 180 instruments
Schooling coefficient 0.0928 0.1125 0.1096 0.1062 0.1107
Estimated standard error 0.0097 0.0173 0.0161 0.0157 0.0183

C. 1527 instruments
Schooling coefficient 0.0712 0.0862 0.0816 0.1067 0.0862
Estimated standard error 0.0049 0.0254 0.5168 0.0171 0.0066

ably due to larger sample sizes. So, while the slice sampler was
fast enough to permit this amount of computation (about three
hours), additional innovations in sampling such models is an
open area of research.

5.3 Returns to Schooling Data

In this section, the well-known analysis of Angrist and
Krueger (1991) is revisited, where the causal impact of school-
ing on wages was studied using data from the 1980 U.S. Census
on 329,509 men born between 1930 and 1939. The analysis here
closely follows that of Hansen and Kozbur (2014), who control
for 509 variables, consisting of 9 year-of-birth indicators, 50
state-of-birth indicators, as well as the 450 interactions between
them. For instruments, three quarter-of-birth indicators are used,
as well as interactions with the 9 main effects for year-of-birth
and 50 main effects for state-of-birth, for a total of 180 instru-
ments. Further, one can use three quarter-of-birth dummies and
their interactions with the full set of state-of-birth and year-of-
birth controls to obtain a total of 1527 candidate instruments.
For a detailed argument (based on compulsory schooling laws)
regarding why quarter of birth serves as a valid instrument in
this setting, please see the original thorough analysis of Angrist
and Krueger (1991). Our response variable yi = log (wagei) is
the reported log wage of individual i and the treatment variable
xi is reported years of completed schooling for individual i.

In the 1527 instrument case, regularization was required to
obtain a stable covariance estimate. Due to memory consid-
erations the glasso package in R (Friedman, Hastie, and
Tibshirani 2008) was used. The same maximum ratio-of-
eigenvalues strategy as before was used to select the number
of factors, which choses k = 2 (with kmax = 100).

Table 6 compares estimates for a range of different meth-
ods, reproducing a table from Hansen and Kozbur (2014) with
a column added for the results of the factor shrinkage approach.
Observe that the standard error reduction, relative to the basic
three-instrument case, is modest to the point of being immate-
rial for every method except the factor shrinkage prior in the
1527 instrument analysis. However, this distinction is difficult
to interpret given the conceptual differences between frequen-
tist standard errors and Bayesian posterior credible intervals.
Nonetheless, it means that a Bayesian would report with higher
subjective precision by including the extra instruments, with a
posterior standard deviation on the same order of magnitude as
2SLS (but a substantially higher posterior mean).

An interesting methodological question is how estimates from
regularized methods behave as the number of instruments is in-
creased. Specifically, it is observed that as more instruments are
added, estimates from many estimators (including 2SLS) tend
toward the OLS estimate. Therefore, it is interesting to see how
regularization methods mitigate this recognized bias. Again, the
results are equivocal in the sense that estimates lying between
the three-instrument 2SLS estimate (0.1079) and the OLS esti-
mate (0.0673) need not be incorrect. Hansen and Kozbur (2014)
suggested informally that the stability of their RJIVE estimate
as the number of instruments increases (at the three-instrument
2SLS estimate) is reassuring behavior, although this does not
follow logically3. For example, there is not necessarily any rea-
son to trust the RJIVE estimate (0.1067) more than the Post-
LASSO estimate (0.0862). This comparison is relevant because
the Bayesian estimate happens to line up with the Post-LASSO
estimate in this instance and, from a Bayesian perspective, there
is no special reason to find it suspect. Furthermore, if the three-
instrument 2SLS is going to serve as a gold-standard, one might
as well simply use that method exclusively, especially given that
more elaborate methods do not appear to yield much increase
in precision.

6. CONCLUSION

When many candidate instruments are available—including
polynomial expansions and interactions of existing instruments
— judicious regularization of the first-stage regression is a cru-
cial component of a well-behaved IV estimator. This article
proposes a Bayesian model built on the assumption that the
treatment variable is more likely to depend on the commonali-
ties of the instrument matrix than on the idiosyncrasies. Analysis
on synthetic data reveals that the new prior performs according
to intuition: when factor structure predictive of the treatment is
apparent in the matrix of instruments, this concordance with the
prior yields tighter inference concerning the treatment effect of

3To quote Hansen and Kozbur (2014): “The results reported in Panel C of Table
3 are based on using the full set of 1527 instruments and are the most interesting
from the standpoint of the present article. In this case, both the Post-LASSO
and JIVE point estimates have shifted substantively toward the OLS estimate.
In contrast, the RJIVE is very stable, remaining around the value estimated by
all of the procedures using only three instruments. More interesting is the fact
that standard errors from both JIVE and Post-LASSO are now pronouncedly
larger than the standard error from the RJIVE.”
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interest. The new prior can be used even when the instruments
are not jointly Gaussian, such as many binary instruments. Fi-
nally, the slice sampling approach described here allows us to try
various shrinkage priors easily and allows fitting large datasets,
both in terms of the sample size n and the number of instruments
p.

APPENDIX A: INCORPORATING EXOGENOUS
COVARIATES

In many applied problems, in addition to the instrumental variables,
one has available exogenous control covariates. In fact, the validity of
the instruments often depends on incorporating a sufficiently rich set of
control variables. Fortunately, the described slice sampling approach is
easily modified to accommodate this possibility. Letting vi denote the
vector of control variables

f (x, y | z) = f (y | x, z)f (x | z)

= Ny|x
(
xβ + α (x − ztδz − vtδv

)+ γ vi , ξ
2
)

×Nx

(
ztδz + vtδv, σ

2
x

)
. (A.1)

Using this model, our sampler works as before, by drawing samples
of δt = (δtz, δ

t
v) based on π (δ, σ 2

x | x,Z,V) with x̃i := (xi, xi − ztiδz −
vtiδv, vi).

Note that by incorporating vi , M is enlarged to be pv + 2 square,
where pv is the number of exogenous covariates. While this requires
additional computation, evaluating M, M−1 , and det(M) can be done
relatively efficiently using block matrix algebra, taking advantage of
the fact that for each first-stage sample δ, x̃i only differs in a single
entry.
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